








  MIT Parallel Computing and Scientific Machine Learning

  JuliaHub & MIT

  2202-11-17




Preface

This book is a compilation of lecture notes from the MIT Course 18.337J/6.338J: Parallel Computing and Scientific Machine Learning. It is meant to be a live document, updating to continuously add the latest details on methods from the field of scientific machine learning and the latest techniques for high-performance computing.

All original content was created by Dr. Chris Rackauckas with assistance from David Sanders. Contributors from JuliaHub & MIT continue to make revisions in the hopes to make the SciML ecosystem accessible to all.

Examples and applications will be shown using the Julia programming langauge.
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1 Optimizing Serial Code

At the center of any fast parallel code is a fast serial code. Parallelism is made to be a performance multiplier, so if you start from a bad position it won’t ever get much better. Thus the first thing that we need to do is understand what makes code slow and how to avoid the pitfalls. This discussion of serial code optimization will also directly motivate why we will be using Julia throughout this course.


1.1 Mental Model of a Memory

To start optimizing code you need a good mental model of a computer.


1.1.1 High Level View

At the highest level you have a CPU’s core memory which directly accesses a L1 cache. The L1 cache has the fastest access, so things which will be needed soon are kept there. However, it is filled from the L2 cache, which itself is filled from the L3 cache, which is filled from the main memory. This bring us to the first idea in optimizing code: using things that are already in a closer cache can help the code run faster because it doesn’t have to be queried for and moved up this chain.



When something needs to be pulled directly from main memory this is known as a cache miss. To understand the cost of a cache miss vs standard calculations, take a look at this classic chart.

(Cache-aware and cache-oblivious algorithms are methods which change their indexing structure to optimize their use of the cache lines. We will return to this when talking about performance of linear algebra.)



1.1.2 Cache Lines and Row/Column-Major

Many algorithms in numerical linear algebra are designed to minimize cache misses. Because of this chain, many modern CPUs try to guess what you will want next in your cache. When dealing with arrays, it will speculate ahead and grab what is known as a cache line: the next chunk in the array. Thus, your algorithms will be faster if you iterate along the values that it is grabbing.

The values that it grabs are the next values in the contiguous order of the stored array. There are two common conventions: row major and column major. Row major means that the linear array of memory is formed by stacking the rows one after another, while column major puts the column vectors one after another.



Julia, MATLAB, and Fortran are column major. Python’s numpy is row-major.


A = rand(100, 100)
B = rand(100, 100)
C = rand(100, 100)
using BenchmarkTools
function inner_rows!(C, A, B)
  for i in 1:100, j in 1:100
    C[i, j] = A[i, j] + B[i, j]
  end
end
@btime inner_rows!(C, A, B)



  11.561 μs (0 allocations: 0 bytes)






function inner_cols!(C, A, B)
  for j in 1:100, i in 1:100
    C[i, j] = A[i, j] + B[i, j]
  end
end
@btime inner_cols!(C, A, B)



  8.430 μs (0 allocations: 0 bytes)







1.1.3 Lower Level View: The Stack and the Heap

Locally, the stack is composed of a stack and a heap. The stack requires a static allocation: it is ordered. Because it’s ordered, it is very clear where things are in the stack, and therefore accesses are very quick (think instantaneous). However, because this is static, it requires that the size of the variables is known at compile time (to determine all of the variable locations). Since that is not possible with all variables, there exists the heap. The heap is essentially a stack of pointers to objects in memory. When heap variables are needed, their values are pulled up the cache chain and accessed.

 



1.1.4 Heap Allocations and Speed

Heap allocations are costly because they involve this pointer indirection, so stack allocation should be done when sensible (it’s not helpful for really large arrays, but for small values like scalars it’s essential!)


function inner_alloc!(C, A, B)
  for j in 1:100, i in 1:100
    val = [A[i, j] + B[i, j]]
    C[i, j] = val[1]
  end
end
@btime inner_alloc!(C, A, B)



  241.333 μs (10000 allocations: 625.00 KiB)






function inner_noalloc!(C, A, B)
  for j in 1:100, i in 1:100
    val = A[i, j] + B[i, j]
    C[i, j] = val[1]
  end
end
@btime inner_noalloc!(C, A, B)



  6.147 μs (0 allocations: 0 bytes)





Why does the array here get heap-allocated? It isn’t able to prove/guarantee at compile-time that the array’s size will always be a given value, and thus it allocates it to the heap. @btime tells us this allocation occurred and shows us the total heap memory that was taken. Meanwhile, the size of a Float64 number is known at compile-time (64-bits), and so this is stored onto the stack and given a specific location that the compiler will be able to directly address.

Note that one can use the StaticArrays.jl library to get statically-sized arrays and thus arrays which are stack-allocated:


using StaticArrays
function static_inner_alloc!(C, A, B)
  for j in 1:100, i in 1:100
    val = @SVector [A[i, j] + B[i, j]]
    C[i, j] = val[1]
  end
end
@btime static_inner_alloc!(C, A, B)



  7.686 μs (0 allocations: 0 bytes)







1.1.5 Mutation to Avoid Heap Allocations

Many times you do need to write into an array, so how can you write into an array without performing a heap allocation? The answer is mutation. Mutation is changing the values of an already existing array. In that case, no free memory has to be found to put the array (and no memory has to be freed by the garbage collector).

In Julia, functions which mutate the first value are conventionally noted by a !. See the difference between these two equivalent functions:


function inner_noalloc!(C, A, B)
  for j in 1:100, i in 1:100
    val = A[i, j] + B[i, j]
    C[i, j] = val[1]
  end
end
@btime inner_noalloc!(C, A, B)



  8.038 μs (0 allocations: 0 bytes)






function inner_alloc(A, B)
  C = similar(A)
  for j in 1:100, i in 1:100
    val = A[i, j] + B[i, j]
    C[i, j] = val[1]
  end
end
@btime inner_alloc(A, B)



  8.430 μs (2 allocations: 78.17 KiB)





To use this algorithm effectively, the ! algorithm assumes that the caller already has allocated the output array to put as the output argument. If that is not true, then one would need to manually allocate. The goal of that interface is to give the caller control over the allocations to allow them to manually reduce the total number of heap allocations and thus increase the speed.



1.1.6 Julia’s Broadcasting Mechanism

Wouldn’t it be nice to not have to write the loop there? In many high level languages this is simply called vectorization. In Julia, we will call it array vectorization to distinguish it from the SIMD vectorization which is common in lower level languages like C, Fortran, and Julia.

In Julia, if you use . on an operator it will transform it to the broadcasted form. Broadcast is lazy: it will build up an entire .’d expression and then call broadcast! on composed expression. This is customizable and documented in detail. However, to a first approximation we can think of the broadcast mechanism as a mechanism for building fused expressions.
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2 Discussion Questions

Here’s a few discussion questions to think about performance engineering in scientific tasks:


	What are the advantages of a Vector{Array} vs a Matrix? What are the disadvantage? (What’s different?)

	What is a good way to implement a data frame?

	What are some good things that come out of generic functions for free? What are some things you should watch out for with generic functions?
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3 Introduction to Scientific Machine Learning through Physics-Informed Neural Networks


3.1 Youtube Video Link Part 1



3.2 Youtube Video Link Part 2

Here we will start to dig into what scientific machine learning is all about by looking at physics-informed neural networks. Let’s start by understanding what a neural network really is, why they are used, and what kinds of problems that they solve, and then we will use this understanding of a neural network to see how to solve ordinary differential equations with neural networks. For there, we will use this method to regularize neural networks with physical equations, the aforementioned physics-informed neural network, and see how to define neural network architectures that satisfy physical constraints to improve the training process.



3.3 Getting Started with Machine Learning: Adding Flux

To add Flux.jl we would do:


]add Flux




To then use the package we will then use the using command:


using Flux




If you prefer to namespace all commands (like is normally done in Python, i.e. Flux.gradient instead of gradient), you can use the command:


import Flux




Note that the installation and precompilation of these packages will occur at the add and first using phases, so they may take awhile (subsequent uses will utilize the precompiled form and take a lot less time!)



3.4 What is a Neural Network?

A neural network is a function:

NN(x)=W3σ2(W2σ1(W1x+b1)+b2)+b3
\text{NN}(x) = W_3\sigma_2(W_2\sigma_1(W_1x + b_1) + b_2) + b_3


where we can change the number of layers ((W_i,b_i)) as necessary. Let’s assume we want to approximate some R10→R5R^{10} \rightarrow R^5 function. To do this we need to make sure that we start with 10 inputs and arrive at 5 outputs. If we want a bigger middle layer for example, we can do something like (10,32,32,5). Size changing occurs at the site of the matrix multiplication, which means that we want a 32x10 matrix, then a 32x32 matrix, and finally a 5x32 matrix. This neural network would look like:


W = [randn(32,10),randn(32,32),randn(5,32)]
b = [zeros(32),zeros(32),zeros(5)]



3-element Vector{Vector{Float64}}:
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0, 0.0, 0.0]






simpleNN(x) = W[3]*tanh.(W[2]*tanh.(W[1]*x + b[1]) + b[2]) + b[3]
simpleNN(rand(10))



5-element Vector{Float64}:
  2.8605712678224178
  3.435514777615668
 -3.395692609866982
 -3.892502796498385
  6.526141826714849





This is our direct definition of a neural network. Notice that we choose to use tanh as our activation function between the layers.


3.4.1 Defining Neural Networks with Flux.jl

One of the main deep learning libraries in Julia is Flux.jl. Flux is an interesting library for scientific machine learning because it is built on top of language-wide automatic differentiation libraries, giving rise to a programming paradigm known as differentiable programming, which means that one can write a program in a manner that it has easily accessible fast derivatives. However, due to being built on a differentiable programming base, the underlying functionality is simply standard Julia code,

To learn how to use the library, consult the documentation. A Google search will bring up the Flux.jl Github repository. From there, the blue link on the README brings you to the package documentation. This is common through Julia so it’s a good habit to learn!

In the documentation you will find that the way a neural network is defined is through a Chain of layers. A Dense layer is the kind we defined above, which is given by an input size, an output size, and an activation function. For example, the following recreates the neural network that we had above:


using Flux
NN2 = Chain(Dense(10,32,tanh),
           Dense(32,32,tanh),
           Dense(32,5))
NN2(rand(10))



┌ Warning: Layer with Float32 parameters got Float64 input.
│   The input will be converted, but any earlier layers may be very slow.
│   layer = Dense(10 => 32, tanh)  # 352 parameters
│   summary(x) = "10-element Vector{Float64}"
└ @ Flux ~/.julia/packages/Flux/uCLgc/src/layers/stateless.jl:50




5-element Vector{Float32}:
 -0.4021711
 -0.0072671026
 -0.22040473
  0.6827602
 -0.3593581





Notice that Flux.jl as a library is written in pure Julia, which means that every piece of this syntax is just sugar over some Julia code that we can specialize ourselves (this is the advantage of having a language fast enough for the implementation of the library and the use of the library!)

For example, the activation function is just a scalar Julia function. If we wanted to replace it by something like the quadratic function, we can just use an anonymous function to define the scalar function we would like to use:


NN3 = Chain(Dense(10,32,x->x^2),
            Dense(32,32,x->max(0,x)),
            Dense(32,5))
NN3(rand(10))



5-element Vector{Float32}:
 -0.3568141
  0.35037357
 -0.244156
 -0.10476777
 -0.06255814





The second activation function there is what’s known as a relu. A relu can be good to use because it’s an exceptionally operation and satisfies a form of the UAT. However, a downside is that its derivative is not continuous, which could impact the numerical properties of some algorithms, and thus it’s widely used throughout standard machine learning but we’ll see reasons why it may be disadvantageous in some cases in scientific machine learning.



3.4.2 Digging into the Construction of a Neural Network Library

Again, as mentioned before, this neural network NN2 is simply a function:


simpleNN(x) = W[3]*tanh.(W[2]*tanh.(W[1]*x + b[1]) + b[2]) + b[3]



simpleNN (generic function with 1 method)





Let’s dig into the library and see how that’s represented and really understand the construction of a deep learning library. First, let’s figure out where Dense comes from and what it does.


using InteractiveUtils
@which Dense(10,32,tanh)



Dense(in::Integer, out::Integer, σ; kw...) in Flux at /home/jacob/.julia/packages/Flux/uCLgc/src/deprecations.jl:63




If we go to that spot of the documentation, we find the following.


struct Dense{F,S<:AbstractArray,T<:AbstractArray}
  W::S
  b::T
  σ::F
end

function Dense(in::Integer, out::Integer, σ = identity;
               initW = glorot_uniform, initb = zeros)
  return Dense(initW(out, in), initb(out), σ)
end

function (a::Dense)(x::AbstractArray)
  W, b, σ = a.W, a.b, a.σ
  σ.(W*x .+ b)
end




First, Dense defines a struct in Julia. This struct just holds a weight matrix W, a bias vector b, and an activation function σ. The function called Dense is what’s known as an outer constructor which defines how the Dense type is built. If you give it two integers (and optionally an activation function which defaults to identity), then what it will do is take random initial W and b matrices (according to the glorot_uniform distribution for W and zeros for b), and then it will build the type with those matrices.

The last portion might be new. This is known as a callable struct, or a functor. It defines the dispatch for how calls work on the struct. As a quick demonstration, let’s define a type MyCallableStruct with a field x, and then make instances of MyCallableStruct be the function x+y:


struct MyCallableStruct
  x
end

(a::MyCallableStruct)(y) = a.x+y
a = MyCallableStruct(2)
a(3)



5





If you’re familiar with object-oriented programming, this is similar to using an object in a way that references the self, though it’s a bit more general due to allowing dispatching, i.e. this can then dependent on the input types as well.

So let’s look at that Dense call with this in mind:


function (a::Dense)(x::AbstractArray)
  W, b, σ = a.W, a.b, a.σ
  σ.(W*x .+ b)
end




This means that Dense is a function that takes in an x and computes σ.(W*x.+b), which is precisely how we defined the layer before! To see that this is just a function, let’s call it directly:


f = Dense(32,32,tanh)
f(rand(32))



32-element Vector{Float32}:
 -0.5367366
  0.52198565
  0.28639972
 -0.17914608
 -0.23885104
 -0.40826145
 -0.4797304
 -0.14034823
  0.21263105
  0.56615365
  0.8983279
  0.88845724
  0.65734917
  ⋮
 -0.16196714
 -0.39232373
 -0.8330534
 -0.5253682
  0.8483324
  0.24299504
 -0.5967221
  0.63987666
  0.1899423
  0.13865401
  0.42730752
  0.45429066





So okay, Dense objects are just functions that have weight and bias matrices inside of them. Now what does Chain do?


@which Chain(1,2,3)



Chain(xs...) in Flux at /home/jacob/.julia/packages/Flux/uCLgc/src/layers/basic.jl:39




gives us:


struct Chain{T<:Tuple}
  layers::T
  Chain(xs...) = new{typeof(xs)}(xs)
end

applychain(::Tuple{}, x) = x
applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))

(c::Chain)(x) = applychain(c.layers, x)




Let’s now dig into this. The ... is known that the slurp operator, which allows for “slurping up” multiple arguments into a single object xs. For example:


slurper(xs...) = @show xs
slurper(1,2,3,4,5)



xs = (1, 2, 3, 4, 5)




(1, 2, 3, 4, 5)





We see that slurps the inputs up into a Tuple, which is an immutable data store. (Note: Tuples are stack-allocated if inferred and is the internal data store of the compiler itself, and compiler inference can know exactly the size and the type of each individual object, so this does not have an overhead if fully inferred).

The function Chain(xs...) = new{typeof(xs)}(xs) is an inner constructor which builds a new instance of Chain where layers is a tuple of the inputs. This means that in our case where we put a bunch of Dense inside of there, layers is a tuple of functions. What does Chain do? Let’s look at its call:


(c::Chain)(x) = applychain(c.layers, x)




This takes the tuple of functions and then does applychain on it.


applychain(::Tuple{}, x) = x
applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))




applychain is a recursive function which applies the first element of the tuple onto x, then it calls applychain to call the second function onto x, repeatedly until there are no more functions in which case it returns x. This means that applychain is simply doing h(g(f(x))) on the tuple of functions (f,g,h)! We can thus see that this library function is exactly equivalent to the neural network we defined by hand, just put together in a different form to give a nice user interface.


3.4.2.1 Detail: Recursion?

But there’s one more detail… why recursion? If you define a function, look at its type:


ff(x,y) = 2x+y
typeof(ff)



typeof(ff) (singleton type of function ff, subtype of Function)





Notice that its type is simply typeof(ff) which is unique to the function, i.e. every single function is its own struct. In fact, given what we just learned, it wouldn’t be a surprise to learn that is exactly what a function is in Julia! A function definition lowers at the parser level to something like:


struct ff2 <: Function end
(_::ff2)(x,y) = 2x + y
const ff = ff2()




This means that the primitive operation here that everything really comes down to is calls on structs. Why is this done with unique singleton types? (Singleton types are types where every instance is equivalent). Well, if we want the compiler to be able to optimize with respect to which function we are handling inside of another function, then we need “what function we are dealing with” as compile-time information, which necessitates being type information.

Tuples are contravariant and heterogeneously typed with a parameter per internal object. For example:


tup = (1.0,1,"1")
typeof(tup)



Tuple{Float64, Int64, String}





This means that it is possible to infer outputs of a tuple even if it’s heterogeneously typed by making good use of constant literals. For example, the expression tup[1] will be inferred to have the output Float64. However, note that if i is not a compile-time constant, then tup[i] cannot be inferred since, given what the compiler knows, the output could be either a Float64, an Int64, or a String.

So now let’s think back to our tuple of functions. By what we described before, tup = (f,g,h) is going to have a different type for each of the functions and thus could not specialize on the inputs if we used tup[i]. Therefore:


for i in 1:length(tup)
  x = tup[i](x)
end




would be slow (if the function call cost is small compared to the dispatch cost of about 100ns. This is not always the case, but should be considered in many instances!). So how can you get around it? Well, if everything was constant literals then this would specialize:


tup[3](tup[2](tup[1](x)))




would fully specialize and infer, and the compiler would have full knowledge of the entire call chain as if it were written out as straightline code. Now if we look at the recursion again:


applychain(::Tuple{}, x) = x
applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))




we see that, at compile-time, we know that typeof((f,g,h)) = Tuple{typeof(f),typeof(g),typeof(h)}, and so we know that the first first(fs) will be f, and can specialize on this. We know then that tail(fs) has to be the (g,h) and so then we recurse and know that g is first and … This means that this scheme is equivalent to have written out xs[3](xs[2](xs[1](x))) and is thus generating code perfectly specialized to the order and amount of functions we had put into the Chain. This kind of abstraction, an abstraction where all of the overhead compiles away, is known as a zero-cost abstraction.

(Note that technically, there is a cost since the compiler has to unravel this chain of events.)




3.4.3 Training Neural Networks

Now let’s get into training neural networks. “Training” a neural network is simply the process of finding weights that minimize a loss function. For example, let’s say we wanted to make our neural network be the constant function 1 for any input x∈[0,1]10x \in [0,1]^{10}``$. We can then write the loss function:


NN = Chain(Dense(10,32,tanh),
           Dense(32,32,tanh),
           Dense(32,5))
loss() = sum(abs2,sum(abs2,NN(rand(10)).-1) for i in 1:100)
loss()



1160.6853f0





This loss function takes 100 random points in [0,1] and then computes the output of the neural network minus 1 on each of the values, and sums up the squared values (abs2). Why the squared values? This means that every computed loss value is positive, and so we know that by decreasing the loss this means that, on average our neural network outputs are closer to 1. What are the weights? Since we’re using the Flux callable struct style from above, the weights are those inside of the NN chain object, which we can inspect:


NN[1].weight # The W matrix of the first layer



32×10 Matrix{Float32}:
  0.0617633   0.0476473    0.367495   …   0.21322     0.110699    0.0483395
  0.2348      0.0170133   -0.0120995      0.203338    0.0142475  -0.0655291
  0.308547    0.37507     -0.326213       0.181779    0.0561191   0.213715
  0.271252   -0.00643088  -0.0264589      0.0298562  -0.237633   -0.0896577
  0.270666   -0.216012    -0.140337       0.32312     0.192111    0.194484
 -0.215045   -0.132689    -0.153443   …   0.0234708   0.306224    0.0113961
  0.154574    0.00743502   0.0526548     -0.0741182   0.174752    0.00635122
 -0.303119   -0.216385    -0.237048       0.323751    0.166725   -0.147179
  0.125574    0.348522     0.0494332     -0.371161   -0.217364    0.245508
 -0.256495   -0.0892113   -0.194885      -0.249393    0.267329    0.321551
 -0.348631    0.160552    -0.260821   …   0.231765   -0.303279   -0.00602992
  0.0251388  -0.348187    -0.256799       0.111053   -0.264763   -0.178937
  0.310334   -0.118       -0.313539      -0.0839456   0.0798547   0.329868
  ⋮                                   ⋱                          
  0.314822    0.0221928   -0.216248   …  -0.0609633  -0.244375    0.348501
  0.356472   -0.322428    -0.329269       0.109516   -0.334538    0.297003
  0.344467   -0.250647    -0.289369      -0.0853726   0.198233    0.0483395
 -0.0549978  -0.0369719    0.0605305      0.135977    0.0504732  -0.152299
 -0.320104   -0.0934187   -0.213697      -0.108152    0.120884    0.108307
  0.0707688   0.0707974   -0.125977   …   0.364248   -0.324752    0.231709
  0.263825   -0.291257    -0.365052      -0.256581    0.098062    0.143241
 -0.353593    0.0692346   -0.0448797     -0.175934   -0.337382    0.334844
 -0.293177    0.184962     0.0900291      0.221514    0.0772034  -0.247417
  0.250449   -0.139811     0.116839       0.161669    0.256676    0.342365
 -0.26568    -0.113342    -0.278809   …   0.347005    0.36077    -0.236281
  0.222551   -0.230165    -0.308891       0.0734262  -0.165305   -0.0720222





Now let’s grab all of the parameters together:


p = Flux.params(NN)



Params([Float32[0.061763335 0.047647286 … 0.110698976 0.04833954; 0.23479967 0.017013341 … 0.014247525 -0.065529056; … ; -0.26568043 -0.113342285 … 0.3607698 -0.23628128; 0.22255096 -0.23016526 … -0.16530466 -0.0720222], Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], Float32[0.1768927 -0.2885014 … 0.11366074 -0.16160522; -0.07940007 0.028332291 … 0.188492 0.18276931; … ; 0.26245728 0.039070297 … 0.29687116 -0.29729697; -0.18429567 -0.2517362 … 0.2488288 0.18141796], Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], Float32[-0.08810834 0.04296705 … -0.002606758 0.037123952; -0.11644477 -0.29981604 … 0.13359757 -0.0040248684; … ; -0.025342945 0.19268636 … 0.091891505 -0.17319185; 0.29233274 0.07997608 … -0.25965658 -0.011288382], Float32[0.0, 0.0, 0.0, 0.0, 0.0]])





That’s a helper function on Chain which recursively gathers all of the defining parameters. Let’s now find the optimal values p which cause the neural network to be the constant 1 function:


Flux.train!(loss, p, Iterators.repeated((), 10000), ADAM(0.1))




Now let’s check the loss:


loss()



1.9913516f-5





This means that NN(x) is now a very good function approximator to f(x) = ones(5)!



3.4.4 So Why Machine Learning? Why Neural Networks?

All we did was find parameters that made NN(x) act like a function f(x). How does that relate to machine learning? Well, in any case where one is acting on data (x,y), the idea is to assume that there exists some underlying mathematical model f(x) = y. If we had perfect knowledge of what f is, then from only the information of x we can then predict what y would be. The inference problem is to then figure out what function f should be. Therefore, machine learning on data is simply this problem of finding an approximator to some unknown function!

So why neural networks? Neural networks satisfy two properties. The first of which is known as the Universal Approximation Theorem (UAT), which in simple non-mathematical language means that, for any ϵ of accuracy, if your neural network is large enough (has enough layers, the weight matrices are large enough), then it can approximate any (nice) function f within that ϵ. Therefore, we can reduce the problem of finding missing functions, the problem of machine learning, to a problem of finding the weights of neural networks, which is a well-defined mathematical optimization problem.

Why neural networks specifically? That’s a fairly good question, since there are many other functions with this property. For example, you will have learned from analysis that a0+a1x+a2x2+…a_0 + a_1 x + a_2 x^2 + \ldots arbitrary polynomials can be used to approximate any analytic function (this is the Taylor series). Similarly, a Fourier series

f(x)=a0+∑kbkcos(kx)+cksin(kx)
f(x) = a_0 + \sum_k b_k \cos(kx) + c_k \sin(kx)


can approximate any continuous function f (and discontinuous functions also can have convergence, etc. these are the details of a harmonic analysis course).

That’s all for one dimension. How about two dimensional functions? It turns out it’s not difficult to prove that tensor products of universal approximators will give higher dimensional universal approximators. So for example, tensoring together two polynomials:

a0+a1x+a2y+a3xy+a4x2y+a5xy2+a6x2y2+…
a_0 + a_1 x + a_2 y + a_3 x y + a_4 x^2 y + a_5 x y^2 + a_6 x^2 y^2 + \ldots


will give a two-dimensional function approximator. But notice how we have to resolve every combination of terms. This means that if we used n coefficients in each dimension d, the total number of coefficients to build a d-dimensional universal approximator from one-dimensional objects would need ndn^d coefficients. This exponential growth is known as the curse of dimensionality.

The second property of neural networks that makes them applicable to machine learning is that they overcome the curse of dimensionality. The proofs in this area can be a little difficult to parse, but what they boil down to is proving in many cases that the growth of neural networks to sufficiently approximate a d-dimensional function grows as a polynomial of d, rather than exponential. This means that there’s some dimensional cutoff where for d>cutoffd>cutoff it is more efficient to use a neural network. This can be problem-specific, but generally it tends to be the case at least by 8 or 10 dimensions.

Neural networks have a few other properties to consider as well:


	The assumptions of the neural network can be encoded into the neural architectures. A neural network where the last layer has an activation function x->x^2 is a neural network where all outputs are positive. This means that if you want to find a positive function, you can make the optimization easier by enforcing this constraint. A lot of other constraints can be enforced, like tanh activation functions can make the neural network be a smooth (all derivatives finite) function, or other activations can cause finite numbers of learnable discontinuities.

	Generating higher dimensional forms from one dimensional forms does not have good symmetry. For example, the two-dimensional tensor Fourier basis does not have a good way to represent sin(xy)sin(xy). This property of the approximator is called (non)isotropy and more detail can be found in this wonderful talk about function approximation for multidimensional integration (cubature). Neural networks are naturally not aligned to a basis.

	Neural networks are “easy” to compute. There’s good software for them, GPU-acceleration, and all other kinds of tooling that make them particularly simple to use.

	There are proofs that in many scenarios for neural networks the local minima are the global minima, meaning that local optimization is sufficient for training a neural network. Global optimization (which we will cover later in the course) is much more expensive than local methods like gradient descent, and thus this can be a good property to abuse for faster computation.





3.4.5 From Machine Learning to Scientific Machine Learning: Structure and Science

This understanding of a neural network and their libraries directly bridges to the understanding of scientific machine learning and the computation done in the field. In scientific machine learning, neural networks and machine learning are used as the basis to solve problems in scientific computing. Scientific computing, as a discipline also known as Computational Science, is a field of study which focuses on scientific simulation, using tools such as differential equations to investigate physical, biological, and other phenomena.

What we wish to do in scientific machine learning is use these properties of neural networks to improve the way that we investigate our scientific models.


3.4.5.1 Aside: Why Differential Equations?

Why do differential equations come up so often in as the model in the scientific context? This is a deep question with quite a simple answer. Essentially, all scientific experiments always have to test how things change. For example, you take a system now, you change it, and your measurement is how the changes you made caused changes in the system. This boils down to gather information about how, for some arbitrary system y=f(x)y = f(x), how Δx\Delta x is related to Δy\Delta y. Thus what you learn from scientific experiments, what is codified as scientific laws, is not “the answer”, but the answer to how things change. This process of writing down equations by describing how they change precisely gives differential equations.





3.5 Solving ODEs with Neural Networks: The Physics-Informed Neural Network

Now let’s get to our first true SciML application: solving ordinary differential equations with neural networks. The process of solving a differential equation with a neural network, or using a differential equation as a regularizer in the loss function, is known as a physics-informed neural network, since this allows for physical equations to guide the training of the neural network in circumstances where data might be lacking.


3.5.1 Background: A Method for Solving Ordinary Differential Equations with Neural Networks

This is a result first due to Lagaris et. al from 1998. The idea is to solve differential equations using neural networks by representing the solution by a neural network and training the resulting network to satisfy the conditions required by the differential equation.

Let’s say we want to solve a system of ordinary differential equations

u′=f(u,t)u' = f(u,t)

with t∈[0,1]t \in [0,1] and a known initial condition u(0)=u0u(0)=u_0. To solve this, we approximate the solution by a neural network:

NN(t)≈u(t)NN(t) \approx u(t)

If NN(t)NN(t) was the true solution, then it would hold that NN′(t)=f(NN(t),t)NN'(t) = f(NN(t),t) for all tt. Thus we turn this condition into our loss function. This motivates the loss function:

L(p)=∑i(dNN(ti)dt−f(NN(ti),ti))2L(p) = \sum_i \left(\frac{dNN(t_i)}{dt} - f(NN(t_i),t_i) \right)^2

The choice of tit_i could be done in many ways: it can be random, it can be a grid, etc. Anyways, when this loss function is minimized (gradients computed with standard reverse-mode automatic differentiation), then we have that dNN(ti)dt≈f(NN(ti),ti)\frac{dNN(t_i)}{dt} \approx f(NN(t_i),t_i) and thus NN(t)NN(t) approximately solves the differential equation.

Note that we still have to handle the initial condition. One simple way to do this is to add an initial condition term to the cost function. This would look like:

L(p)=(NN(0)−u0)2+∑i(dNN(ti)dt−f(NN(ti),ti))2L(p) = (NN(0) - u_0)^2 + \sum_i \left(\frac{dNN(t_i)}{dt} - f(NN(t_i),t_i) \right)^2

While that would work, it can be more efficient to encode the initial condition into the function itself so that it’s trivially satisfied for any possible set of parameters. For example, instead of directly using a neural network, we can use:

g(t)=u0+tNN(t)g(t) = u_0 + tNN(t)

as our solution. Notice that g(t)g(t) is thus a universal approximator for all continuous functions such that g(0)=u0g(0)=u_0 (this is a property one should prove!). Since g(t)g(t) will always satisfy the initial condition, we can train g(t)g(t) to satisfy the derivative function then it will automatically be a solution to the derivative function. In this sense, we can use the loss function:

L(p)=∑i(dg(ti)dt−f(g(ti),ti))2L(p) = \sum_i \left(\frac{dg(t_i)}{dt} - f(g(t_i),t_i) \right)^2

where pp are the parameters that define gg, which in turn are the parameters which define the neural network NNNN that define gg. Thus this reduces down, once again, to simply finding weights which minimize a loss function!



3.5.2 Coding Up the Method

Now let’s implement this method with Flux. Let’s define a neural network to be the NN(t) above. To make the problem easier, let’s look at the ODE:

u′=cos2πtu' = \cos 2\pi t

and approximate it with the neural network from a scalar to a scalar:


NNODE = Chain(x -> [x], # Take in a scalar and transform it into an array
           Dense(1,32,tanh),
           Dense(32,1),
           first) # Take first value, i.e. return a scalar
NNODE(1.0)



-0.5546545f0





Instead of directly approximating the neural network, we will use the transformed equation that is forced to satisfy the boundary conditions. Using u0=1.0, we have the function:


g(t) = t*NNODE(t) + 1f0



g (generic function with 1 method)





as our universal approximator. Thus, for this to be a function that satisfies

g′=cos2πtg' = \cos 2\pi t

we would need that:


using Statistics
ϵ = sqrt(eps(Float32))
loss() = mean(abs2(((g(t+ϵ)-g(t))/ϵ) - cos(2π*t)) for t in 0:1f-2:1f0)



loss (generic function with 1 method)





would be minimized.


opt = Flux.Descent(0.01)
data = Iterators.repeated((), 5000)
iter = 0
cb = function () #callback function to observe training
  global iter += 1
  if iter % 500 == 0
    display(loss())
  end
end
display(loss())
Flux.train!(loss, Flux.params(NNODE), data, opt; cb=cb)



0.9115845437914022




0.48569628503109774




0.42981531124122674




0.27270221809982753




0.06500891321484034




0.013762187126522517




0.008711271132654732




0.007763135716424828




0.007367131577092403




0.007011291048500122




0.006678410032753745





How well did this do? Well if we take the integral of both sides of our differential equation, we see it’s fairly trivial:

∫g′=g=∫cos2πt=C+sin2πt2π
\int g' = g = \int \cos 2\pi t = C + \frac{\sin 2\pi t}{2\pi}


where we defined C=1C = 1. Let’s take a bunch of (input,output) pairs from the neural network and plot it against the analytical solution to the differential equation:


using Plots
t = 0:0.001:1.0
plot(t,g.(t),label="NN")
plot!(t,1.0 .+ sin.(2π.*t)/2π, label = "True Solution")
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4 How Loops Work, An Introduction to Discrete Dynamics


4.1 Youtube Video Link Part 1



4.2 Youtube Video Link Part 2

As we saw with the physics-informed neural networks, the basics of most scientific models are dynamical systems. Thus if we want to start to dig into deeper methods, we will need to start looking into the theory and practice of nonlinear dynamical systems. In this lecture we will go over the basic properties of dynamical systems and understand their general behavior through code. We will also learn the idea of stability as an asymptotic property of a mapping, and understand when a system is stable.



4.3 Discrete Dynamical Systems

A discrete dynamical system is a system which updates through discrete updates:

un+1=model(un,n)u_{n+1} = model(u_n,n)

There are many examples of a discrete dynamical system found throughout the scientific literature. For example, many ecological models are discrete dynamical systems, with the most famous being the logistic map:

un+1=run(1−un)u_{n+1} = r u_n (1 - u_n)

describing the growth of a population with a carrying capacity of 1 and a growth rate of r. Another way in which discrete dynamical systems are often encountered is through time series models. These are generally seen in financial forecasting and For example, the autoregressive model AR1 is the following linear dynamical system:

un+1=αun+ϵnu_{n+1} = \alpha u_n + \epsilon_n

where ϵ\epsilon is a standard normal random number. The AR(k) model allows itself to update using delays as well:

un+1=∑j=0k−1αjun−j+ϵnu_{n+1} = \sum_{j=0}^{k-1} \alpha_j u_{n-j} + \epsilon_n

The ARMA model is one that allows using delays on the randomness as well:

un+1=∑j=0k−1(αjun−j+βjϵn−j)u_{n+1} = \sum_{j=0}^{k-1} (\alpha_j u_{n-j}  + \beta_j \epsilon_{n-j})

Another embodiment of a discrete dynamical system is a Recurrent Neural Network (RNN). In its simplest form, a RNN is a system of the form:

un+1=un+f(un,θ)u_{n+1} = u_n + f(u_n,\theta)

where ff is a neural network parameterized by θ\theta.

Note that discrete dynamical systems are even more fundamental than just the ones shown. In any case where a continuous model is discretized to loop on the computer, the resulting algorithm is a discrete dynamical system and thus evolves according to its properties. This fact will be revisited later.



4.4 Properties of Linear Dynamical Systems

First let’s take a look at the scalar linear dynamical system:

un+1=αunu_{n+1} = \alpha u_{n}

We want to ask what the global or geometric behavior of this system is. We can do this by expanding out the system. Notice that if u0u_0 is known, then

un+1=αnu0u_{n+1} = \alpha^n u_0

The global behavior can then be categorized as:


	If ‖α‖<1\Vert \alpha \Vert < 1, then un→0u_n \rightarrow 0

	If ‖α‖>1\Vert \alpha \Vert > 1, then un→∞u_n \rightarrow \infty



If ‖α‖=1\Vert \alpha \Vert = 1, then un→u0u_n \rightarrow u_0 if everything is in the real numbers, but more complex dynamics can occur on the complex plane.



4.5 Nonlinear Geometric Dynamics

The Geometric Theory of Dynamical Systems is the investigation of their long-term properties and the geometry of the phase space which they occupy. Let’s start looking at this in practical terms: how do nonlinear update equations act as time goes to infinity?


4.5.0.1 Banach Fixed Point Theorem

There are surprisingly simple results that we can prove. First let’s recall the Banach Fixed Point Theorem (also known as the Contraction Mapping Theorem). Let (X,d)(X,d) be a metric space (XX is the set of points we are thinking of, here the real numbers. dd is a distance function). ff is a contraction mapping if

d(f(x),f(y))≤qd(x,y)d(f(x),f(y)) \leq q d(x,y)

where q<1q < 1, that is, if applying ff always decreases the distance. The theorem then states that if ff is a contraction mapping, then there is a unique fixed point (point x*x^\ast where f(x*)=x*f(x^\ast)=x^\ast) and a sequence such that x0→x*x_0 \rightarrow x^\ast where

xn+1=f(xn)x_{n+1} = f(x_n)

The proof is by induction, showing that the sequence is Cauchy. For some m>nm>n we do by the Triangle Inequality

d(xm,xn)≤d(xm,xm−1)+…+d(xn+1,xn)d(x_m,x_n) \leq d(x_{m},x_{m-1}) + \ldots + d(x_{n+1},x_n)

then apply the contraction relation down to the bottom:

d(xm,xn)≤qm−1d(x1,x0)+…+qnd(x1,x0)d(x_m,x_n) \leq q^{m-1} d(x_{1},x_{0}) + \ldots + q^{n} d(x_{1},x_0)

d(xm,xn)≤qnd(x1,x0)∑k=0m−n−1qkd(x_m,x_n) \leq q^n d(x_{1},x_{0}) \sum_{k=0}^{m-n-1} q^k

and since adding more never hurts:

d(xm,xn)≤qnd(x1,x0)∑k=0∞qkd(x_m,x_n) \leq q^n d(x_{1},x_{0}) \sum_{k=0}^{\infty} q^k

But that summation is just a geometric series now, and since q<1q<1 we know it converges to 1/(1−q)1/(1-q), and so we get:

d(xm,xn)≤qn1−qd(x1,x0)d(x_m,x_n) \leq \frac{q^n}{1-q} d(x_{1},x_{0})

The coefficient converges to zero as nn increases, and so the sequence must be Cauchy, which implies there’s a unique fixed point.



4.5.0.2 Stability of Linear Discrete Dynamical Systems

Now let’s take a mapping ff which is sufficiently nice (f∈C1f \in C^1, i.e. the derivative of ff exists and is continuous), where

xn+1=f(xn)x_{n+1} = f(x_n)

Assume that ‖f′(x*)‖<1\Vert f^\prime (x^\ast) \Vert < 1 at some point where f(x)=xf(x)=x. Then by continuity of the second derivative, it follows that there is a neighborhood where ‖f′(x)‖<1\Vert f^\prime (x) \Vert < 1 (). Now recall that this means

dfdx≤1\frac{df}{dx} \leq 1

which means that, for any xx and yy in the neighborhood,

‖f(y)−f(x)y−x‖≤1\Vert \frac{f(y)-f(x)}{y-x} \Vert \leq 1

or

‖f(y)−f(x)‖≤‖y−x‖\Vert f(y)-f(x) \Vert \leq \Vert y-x \Vert

This is essentially another way of saying that a function that is differentiable is Lipschitz, where we can use the derivative as the Lipschitz bound. But notice this means that, in this neighborhood, a function with a derivative less than 1 is a contraction mapping, and thus there is a limiting sequence which goes to the fixed point by the Banach Fixed Point Theorem. Furthermore, the uniqueness guarantees that there is only one fixed point in a sufficiently small neighborhood where the derivative is all less than 1.

A way to interpret this result is that, any nice enough function ff is locally linear. Thus we can understand the global properties of ff by looking the linearization of its dynamics, where the best linear approximation is the linear function f′(x)xf^\prime (x) x. This means that we can think of

xn+1=f(xn)x_{n+1} = f(x_n)

locally as being approximated by

xn+1=f′(x)xnx_{n+1} = f^\prime (x) x_n

and so if the derivative is less than 1 in some neighborhood of a fixed point, then we locally have a linear dynamical system which looks like the simple xn+1=αxnx_{n+1} = \alpha x_n where α<1\alpha <1, and so we get the same convergence property.

This is termed “stability” since, if you are a little bit off from the fixed point, you will tend to go right back to it. An unstable fixed point is one where you fall away. And what happens when the derivative is one? There are various forms of semi-stability that can be proved which go beyond the topic of this course.



4.5.0.3 Update Form

Now let’s look at another form:

xn+1=xn+f(xn)x_{n+1} = x_n + f(x_n)

For example, this is what we generally see with the recurrent neural network (or, as we will find out later, this is how discretizations of continuous systems tend to look!). In this case, we can say that this is a dynamical system

xn+1=g(xn)x_{n+1} = g(x_n)

and so if −2<f′<0-2 < f^\prime < 0, then ‖g′‖=‖1+f′‖<1\Vert g^\prime \Vert = \Vert 1 + f^\prime \Vert < 1 and so we have the same stability idea except now with a condition shifted to zero instead of one.




4.6 Multivariable Systems

Now let x∈Rkx \in R^k be a vector, and define discrete mappings:

xn+1=f(xn)x_{n+1} = f(x_n)

To visualize this, let’s write out the version for x∈R3x \in R^3:

xn+1=[an+1bn+1cn+1]=[f1(an,bn,cn)f2(an,bn,cn)f3(an,bn,cn)]=f(xn)x_{n+1}=\left[\begin{array}{c}
a_{n+1}\\
b_{n+1}\\
c_{n+1}
\end{array}\right]=\left[\begin{array}{c}
f_{1}(a_{n},b_{n},c_{n})\\
f_{2}(a_{n},b_{n},c_{n})\\
f_{3}(a_{n},b_{n},c_{n})
\end{array}\right]=f(x_{n})

The linear multidimensional discrete dynamical system is:

xn+1=Axnx_{n+1} = A x_n

The easiest way to analyze a multidimensional system is to turn it into a bunch of single dimension systems. To do this, assume that AA is diagonalizable. This means that there exists a diagonalization A=P−1DPA =P^{-1}DP where PP is the matrix of eigenvectors and DD is the diagonal matrix of eigenvalues. We can then decompose the system as follows:

Pxn+1=DPxnPx_{n+1} = DPx_n

and now define new variables zn=Pxnz_n = Px_n. In these variables,

zn+1=Dznz_{n+1} = D z_n

but DD is diagonal, so this is a system of kk independent linear dynamical systems. We know that the linear dynamical system will converge to zero if ‖Di‖<1\Vert D_i \Vert < 1, and so this means that znz_n converges to zero if all of the eigenvalues are within the unit circle. Since P0=0P0 = 0, this implies that if all of the eigenvalues of AA are in the unit circle, then xn→0x_n \rightarrow 0.

A multidimensional version of the contraction mapping theorem is then proven exactly in this manner, meaning that if f(x)=xf(x) = x and all eigenvalues of the Jacobian matrix (the linearization of ff) are in the unit circle, then xx is a unique fixed point in some neighborhood.


4.6.0.1 Understanding Delayed Systems

A similar property holds in linear dynamical systems with delays. Take

xn+1=∑j=0k−1αjxn−jx_{n+1} = \sum_{j=0}^{k-1} \alpha_j x_{n-j}

Notice that we can write this as a multidimensional non-delayed system. Let xnix_n^i be the iith term in the vector of the nn time. Then we have:

xn+11=∑j=1k−1αj−1xnjx_{n+1}^1 = \sum_{j=1}^{k-1} \alpha_{j-1} x_{n}^{j}

as an equivalent way to write this, where

xn+1j=xnj−1x_{n+1}^j = x_n^{j-1}

for all of the other terms. Essentially, instead of a system with a delay, we store the memory in other terms of the vector, and keep shifting them down. However, this makes our system much easier to analyze. Instead of a linear delayed dynamical system, this is now a linear multidimensional dynamical system. Its characteristic polynomial is

φ(x)=1−∑j=0k−1αjxj\varphi(x) = 1 - \sum_{j=0}^{k-1} \alpha_j x^j

and so if all of the roots are in the unit circle then this system is stable.



4.6.0.2 Stochastic Dynamical Systems

Now let’s take a look again at the autoregressive process from time series analysis:

un+1=∑j=0k−1αjun−j+ϵnu_{n+1} = \sum_{j=0}^{k-1} \alpha_j u_{n-j} + \epsilon_n

In a very quick handwavy way, we can understand such a system by seeing how the perturbations propagate. If u0=0u_0 = 0, then the starting is just ϵ0\epsilon_0. If we assume all other ϵi=0\epsilon_i = 0, then this system is the same as a linear dynamical system with delays. If all of the roots are in the unit circle, then it goes to zero, meaning the perturbation is forgotten or squashed over time.

We can analyze this more by using the moments. Notice that, by the linearity of the expected value,

𝔼[un+1]=∑j=0k−1αj𝔼[un−j]\mathbb{E}[u_{n+1}] = \sum_{j=0}^{k-1} \alpha_j \mathbb{E}[u_{n-j}]

is a deterministic linear dynamical system which converges if the roots are in the unit circle. This means that the mean stabilizes over time if all of the roots are in the unit circle. In time series analysis, this is called stationarity of the time series.

We can then also look at the stability of the variance as well. Recall that

𝕍[x]=𝔼[x2]−𝔼[x]2\mathbb{V}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2

and so therefore

𝔼[un+12]=𝔼[∑j=0k−1αjun−j2]\mathbb{E}[u_{n+1}^2] = \mathbb{E}[\sum_{j=0}^{k-1} \alpha_j u_{n-j}^2]

and with a bunch of analysis here, working in the same way with the same basic ideas, we can determine conditions on which the variance goes to zero.




4.7 Periodicity and Chaos

Stability is the simplest geometric dynamical property, but there are many others. For example, maps can also have periodic orbits, like:

un+1=−unu_{n+1} = -u_n

will bounce back and forth between two values. These periodic orbits themselves have geometric properties, such as whether it’s a stable periodic orbit (points nearby are attracted to the periodic orbit). Periodic orbits have a length as well: this was a periodic orbit of length 2.

Chaos is another interesting property of a discrete dynamical system. It can be interpreted as a periodic orbit where the length is infinity. This can happen if, by changing a parameter, a period 2 orbit becomes a period 4, then a period 8, etc. (a phenomenon known as period doubling), and when it goes beyond the accumulation point the “infinite period orbit” is reached and chaos is found. A homework problem will delve into the properties of chaos as an example of a simple embarrassingly data-parallel problem.



4.8 Efficient Implementation of Dynamical Systems

Dynamical systems are just loops, so the implementation is easy to understand. However, there are a few things that one must keep in mind in order to allow for efficient implementations.


4.8.0.1 Higher order functions

Functions which compute the solutions to dynamical systems are inherently higher order functions, which means it’s a function which takes in a function as an argument. The following is a quick implementation:


"""
`solve_system(f,u0,n)`

Solves the dynamical system

``u_{n+1} = f(u_n)``

for N steps. Returns the solution at step `n` with parameters `p`.

"""
function solve_system(f,u0,p,n)
  u = u0
  for i in 1:n-1
    u = f(u,p)
  end
  u
end



solve_system





Notice the """ before the function: this is a docstring. When the Julia REPL is queried with ?solve_system this will be the description that is displayed.

Now, is this function going to be efficient? Recall from the earlier discussion that:


	Type-stability is necessary for inference to carry forward type information.

	Julia auto-specializes on input types.

	Inlining can occur automatically for sufficiently small functions.



From this information, we know that in order for this to be efficient, we require that the type of f(u) is inferred. But if f is a variable, how can that be inferred? In order for that to occur, we would have to know what f is, since not all functions will give the same output type. Additionally, in order to inline the function, we will have to know what the function is at compile-time. So, is it possible to make this implementation efficient?

It turns out that this does optimize due to one fact: every function is given by its own type. We can verify this by defining a function and checking its type:


f(u,p) = u^2 - p*u
typeof(f)



typeof(f) (singleton type of function f, subtype of Function)





It displays typeof(f) to indicate that the function f is its own type, and thus at automatic specialization time the compiler knows all of the information about the function and thus inlines and performs inference correctly.

Note that this does mean that the function will need to recompile for every new f. This is similar to statically compiling a function for use in a C/Fortran library. What is the equivalent to using a function like a shared library or a shared object? This is given by FunctionWrappers.jl. This directly stores the function pointer in an object that can have shared type information in order to keep every function as the same type. However, the wrapped function has more information about the pointer… what’s necessary?

The answer is that FunctionWrappers.jl allows for specifying the input and output types, in order for the wrapper to do the right assertions for inference to carry forward type stability, since in this case inference is not able to step through the function pointer.



4.8.0.2 Quick Check

What will approximately be the value of this dynamical system after 1000 steps if you start at 1.0 with parameter p=0.25? Can you guess without solving the system? Think about steady states and stability.


solve_system(f,1.0,0.25,1000)



0.0





The answer is that it goes to zero. The steady states are the zeros of the polynomial, which are 0 and p+1. It’s reasonable to believe that it either goes to one of those 2 values or infinity. In the first step, 1^2 - 0.25 = 0.75 < 1 which suggests (but doesn’t confirm!) that it’s a contraction. Notice that the derivative is 2u-p, and so u=p+1=1.25 is not a stable steady state, and thus we go to zero. In fact, we can check a few values:


solve_system(f,1.1,0.25,1000)



0.0






solve_system(f,1.22,0.25,1000)



0.0






solve_system(f,1.25,0.25,1000)



1.25






solve_system(f,1.251,0.25,20)



Inf





Notice that the moment we go above the steady state p+1, we exponentially grow to infinity.

Just to double check the implementation:


solve_system(f,1.251,0.25,10)
solve_system(f,1.251,0.25,100)
solve_system(f,1.251,0.25,1000)



NaN





Those allocations are just the output, and notice it’s independent of the loop count.



4.8.0.3 Multidimensional System Implementations

When we go to multidimensional systems, some care needs to be taken to decrease the number of allocations which are occurring . One of the ways to do this is to utilize statically sized arrays. For example, let’s look at a discretization of the Lorenz system:


function lorenz(u,p)
  α,σ,ρ,β = p
  du1 = u[1] + α*(σ*(u[2]-u[1]))
  du2 = u[2] + α*(u[1]*(ρ-u[3]) - u[2])
  du3 = u[3] + α*(u[1]*u[2] - β*u[3])
  [du1,du2,du3]
end
p = (0.02,10.0,28.0,8/3)
solve_system(lorenz,[1.0,0.0,0.0],p,1000)



3-element Vector{Float64}:
  1.4744010677851374
  0.8530017039412324
 20.62004063423844





Let’s see what this gives us by saving:


function solve_system_save(f,u0,p,n)
  u = Vector{typeof(u0)}(undef,n)
  u[1] = u0
  for i in 1:n-1
    u[i+1] = f(u[i],p)
  end
  u
end
to_plot = solve_system_save(lorenz,[1.0,0.0,0.0],p,1000)



1000-element Vector{Vector{Float64}}:
 [1.0, 0.0, 0.0]
 [0.8, 0.56, 0.0]
 [0.752, 0.9968000000000001, 0.008960000000000001]
 [0.80096, 1.3978492416000001, 0.023474005333333336]
 [0.92033784832, 1.8180538219817644, 0.04461448495326095]
 [1.099881043052353, 2.296260732619613, 0.07569952060880669]
 [1.339156980965805, 2.864603692722823, 0.12217448583728006]
 [1.6442463233172087, 3.5539673118971193, 0.19238159391549564]
 [2.026190521033191, 4.397339452147425, 0.2989931959555302]
 [2.5004203072560376, 5.431943011293093, 0.4612438424853632]
 [3.0867248480634486, 6.700473453723668, 0.7082869831520391]
 [3.8094745691954923, 8.25130415895562, 1.0841620354518975]
 [4.697840487147518, 10.136982080467158, 1.655002727352565]
 ⋮
 [10.49730559336705, 4.660822889495989, 35.336831929448614]
 [9.330009052592839, 3.0272670946941713, 34.430722536963344]
 [8.069460661013105, 1.766747763108672, 33.159305922954225]
 [6.8089180814322185, 0.8987564841782779, 31.6759436385101]
 [5.6268857619814305, 0.3801973723631693, 30.108951163308078]
 [4.577548084057778, 0.13525687944525802, 28.545926978224173]
 [3.6890898431352737, 0.08257160199224252, 27.035860436772758]
 [2.9677861949066675, 0.15205611935372762, 25.600040161309696]
 [2.4046401797960795, 0.2914663505185634, 24.24373008707723]
 [1.9820054139405763, 0.46628657468365653, 22.964748583050085]
 [1.6788616460891923, 0.6565587545689172, 21.758445642263496]
 [1.4744010677851374, 0.8530017039412324, 20.62004063423844]






using Plots
x = [to_plot[i][1] for i in 1:length(to_plot)]
y = [to_plot[i][2] for i in 1:length(to_plot)]
z = [to_plot[i][3] for i in 1:length(to_plot)]
plot(x,y,z)
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5 The Basics of Single Node Parallel Computing


5.1 Youtube Video Link

Moore’s law was the idea that computers double in efficiency at fixed time points, leading to exponentially more computing power over time. This was true for a very long time.



However, sometime in the last decade, computer cores have stopped getting faster.


The technology that promises to keep Moore’s Law going after 2013 is known as extreme ultraviolet (EUV) lithography. It uses light to write a pattern into a chemical layer on top of a silicon wafer, which is then chemically etched into the silicon to make chip components. EUV lithography uses very high energy ultraviolet light rays that are closer to X-rays than visible light. That’s attractive because EUV light has a short wavelength—around 13 nanometers—which allows for making smaller details than the 193-nanometer ultraviolet light used in lithography today. But EUV has proved surprisingly difficult to perfect.



-MIT Technology Review

The answer to the “end of Moore’s Law” is Parallel Computing. However, programs need to be specifically designed in order to adequately use parallelism. This lecture will describe at a very high level the forms of parallelism and when they are appropriate. We will then proceed to use shared-memory multithreading to parallelize the simulation of the discrete dynamical system.



5.2 Managing Threads


5.2.1 Concurrency vs Parallelism and Green Threads

There is a difference between concurrency and parallelism. In a nutshell:


	Concurrency: Interruptability

	Parallelism: Independentability





To start thinking about concurrency, we need to distinguish between a process and a thread. A process is discrete running instance of a computer program. It has allocated memory for the program’s code, its data, a heap, etc. Each process can have many compute threads. These threads are the unit of execution that needs to be done. On each task is its own stack and a virtual CPU (virtual CPU since it’s not the true CPU, since that would require that the task is ON the CPU, which it might not be because the task can be temporarily haulted). The kernel of the operating systems then schedules tasks, which runs them. In order to keep the computer running smooth, context switching, i.e. changing the task that is actually running, happens all the time. This is independent of whether tasks are actually scheduled in parallel or not.







Each thread has its own stack associated with it.





This is an important distinction because many tasks may need to be ran concurrently but without parallelism. Examples of this are input/output (I/O). For example, in a game you may want to be updating the graphics, but the moment a user clicks you want to handle that event. You do not necessarily need to have these running in parallel, but you need the event handling task to be running concurrently to the processing of the game.



Data handling is the key area of scientific computing where green threads (concurrent non-parallel threads) show up. For data handling, one may need to send a signal that causes a message to start being passed. Alternative hardware take over at that point. This alternative hardware is a processor specific for an I/O bus, like the controller for the SSD, modem, GPU, or Infiniband. It will be polled, then it will execute the command, and give the result. There are two variants:


	Non-Blocking vs Blocking: Whether the thread will periodically poll for whether that task is complete, or whether it should wait for the task to complete before doing anything else

	Synchronous vs Asynchronus: Whether to execute the operation as initiated by the program or as a response to an event from the kernel.



I/O operations cause a privileged context switch, allowing the task which is handling the I/O to directly be switched to in order to continue actions.


5.2.1.1 The Main Event Loop

Julia, along with other languages with a runtime (Javascript, Go, etc.) at its core is a single process running an event loop. This event loop has is the main thread, and “Julia program” or “script” that one is running is actually ran in a green thread that is controlled by the main event loop. The event loop takes over to look for other work whenever the program hits a yield point. More yield points allows for more aggressive task switching, while it also means more switches to the event loop which suspends the numerical task, i.e. making it slower. Thus yielding shouldn’t interrupt the main loop!

This is one area where languages can wildly differ in implementation. Languages structured for lots of I/O and input handling, like Javascript, have yield points at every line (it’s an interpreted language and therefore the interpreter can always take control). In Julia, the yield points are minimized. The common yield points are allocations and I/O (println). This means that a tight non-allocating inner loop will not have any yield points and will be a thread that is not interruptible. While this is great for numerical performance, it is something to be aware of.

Side effect: if you run a long tight loop and wish to exit it, you may try Ctrl + C and see that it doesn’t work. This is because interrupts are handled by the event loop. The event loop is never re-entered until after your tight numerical loop, and therefore you have the waiting occur. If you hit Ctrl + C multiple times, you will escalate the interruption until the OS takes over and then this is handled by the signal handling of the OS’s event loop, which sends a higher level interrupt which Julia handles the moment the safety locks says it’s okay (these locks occur during memory allocations to ensure that memory is not corrupted).



5.2.1.2 Asynchronous Calling Example

This example will become more clear when we get to distributed computing, but for think of remotecall_fetch as a way to run a command on a different computer. What we want to do is start all of the commands at once, and then wait for all the results before finishing the loop. We will use @async to make the call to remotecall_fetch be non-blocking, i.e. it’ll start the job and only poll infrequently to find out when the other machine has completed the job and returned the result. We then add @sync to the loop, which will only continue the loop after all of the green threads have fetched the result. Otherwise, it’s possible that a[idx] may not be filled yet, since the thread may not have fetched the result!


@time begin
    a = Vector{Any}(undef,nworkers())
    @sync for (idx, pid) in enumerate(workers())
        @async a[idx] = remotecall_fetch(sleep, pid, 2)
    end
end




The same can be done for writing to the disk. @async is a quick shorthand for spawning a green thread which will handle that I/O operation, and the main event loop will keep switching between them until they are all handled. @sync encodes that the program will not continue until all green threads are handled. This could be done more manually with Task and Channels, which will be something we touch on in the future.




5.2.2 Examples of the Differences

Synchronous = Thread will complete an action

Blocking = Thread will wait until action is completed


	Asynchronous + Non-Blocking: I/O

	Asynchronous + Blocking: Threaded atomics (demonstrated next lecture)

	Synchronous + Blocking: Standard computing, @sync

	Synchronous + Non-Blocking: Webservers where an I/O operation can be performed, but one never checks if the operation is completed.





5.2.3 Multithreading

If your threads are independent, then it may make sense to run them in parallel. This is the form of parallelism known as multithreading. To understand the data that is available in a multithreaded setup, let’s look at the picture of threads again:



Each thread has its own call stack, but it’s the process that holds the heap. This means that dynamically-sized heap allocated objects are shared between threads with no cost, a setup known as shared-memory computing.


5.2.3.1 Loop-Based Multithreading with (threads?)

Let’s look back at our Lorenz dynamical system from before:


using StaticArrays, BenchmarkTools
function lorenz(u,p)
  α,σ,ρ,β = p
  @inbounds begin
    du1 = u[1] + α*(σ*(u[2]-u[1]))
    du2 = u[2] + α*(u[1]*(ρ-u[3]) - u[2])
    du3 = u[3] + α*(u[1]*u[2] - β*u[3])
  end
  @SVector [du1,du2,du3]
end
function solve_system_save!(u,f,u0,p,n)
  @inbounds u[1] = u0
  @inbounds for i in 1:length(u)-1
    u[i+1] = f(u[i],p)
  end
  u
end
p = (0.02,10.0,28.0,8/3)
u = Vector{typeof(@SVector([1.0,0.0,0.0]))}(undef,1000)
@btime solve_system_save!(u,lorenz,@SVector([1.0,0.0,0.0]),p,1000)



  5.330 μs (0 allocations: 0 bytes)




1000-element Vector{SVector{3, Float64}}:
 [1.0, 0.0, 0.0]
 [0.8, 0.56, 0.0]
 [0.752, 0.9968000000000001, 0.008960000000000001]
 [0.80096, 1.3978492416000001, 0.023474005333333336]
 [0.92033784832, 1.8180538219817644, 0.04461448495326095]
 [1.099881043052353, 2.296260732619613, 0.07569952060880669]
 [1.339156980965805, 2.864603692722823, 0.12217448583728006]
 [1.6442463233172087, 3.5539673118971193, 0.19238159391549564]
 [2.026190521033191, 4.397339452147425, 0.2989931959555302]
 [2.5004203072560376, 5.431943011293093, 0.4612438424853632]
 [3.0867248480634486, 6.700473453723668, 0.7082869831520391]
 [3.8094745691954923, 8.25130415895562, 1.0841620354518975]
 [4.697840487147518, 10.136982080467158, 1.655002727352565]
 ⋮
 [10.49730559336705, 4.660822889495989, 35.336831929448614]
 [9.330009052592839, 3.0272670946941713, 34.430722536963344]
 [8.069460661013105, 1.766747763108672, 33.159305922954225]
 [6.8089180814322185, 0.8987564841782779, 31.6759436385101]
 [5.6268857619814305, 0.3801973723631693, 30.108951163308078]
 [4.577548084057778, 0.13525687944525802, 28.545926978224173]
 [3.6890898431352737, 0.08257160199224252, 27.035860436772758]
 [2.9677861949066675, 0.15205611935372762, 25.600040161309696]
 [2.4046401797960795, 0.2914663505185634, 24.24373008707723]
 [1.9820054139405763, 0.46628657468365653, 22.964748583050085]
 [1.6788616460891923, 0.6565587545689172, 21.758445642263496]
 [1.4744010677851374, 0.8530017039412324, 20.62004063423844]





In order to use multithreading on this code, we need to take a look at the dependency graph and see what items can be calculated independently of each other. Notice that

σ*(u[2]-u[1])
ρ-u[3]
u[1]*u[2]
β*u[3]

are all independent operations, so in theory we could split those off to different threads, move up, etc.

Or we can have three threads:

u[1] + α*(σ*(u[2]-u[1]))
u[2] + α*(u[1]*(ρ-u[3]) - u[2])
u[3] + α*(u[1]*u[2] - β*u[3])

all don’t depend on the output of each other, so these tasks can be run in parallel. We can do this by using Julia’s Threads.@threads macro which puts each of the computations of a loop in a different thread. The threaded loops do not allow you to return a value, so how do you build up the values for the @SVector?

…?

…?

…?

It’s not possible! To understand why, let’s look at the picture again:



There is a shared heap, but the stacks are thread local. This means that a value cannot be stack allocated in one thread and magically appear when re-entering the main thread: it needs to go on the heap somewhere. But if it needs to go onto the heap, then it makes sense for us to have preallocated its location. But if we want to preallocate du[1], du[2], and du[3], then it makes sense to use the fully non-allocating update form:


function lorenz!(du,u,p)
  α,σ,ρ,β = p
  @inbounds begin
    du[1] = u[1] + α*(σ*(u[2]-u[1]))
    du[2] = u[2] + α*(u[1]*(ρ-u[3]) - u[2])
    du[3] = u[3] + α*(u[1]*u[2] - β*u[3])
  end
end
function solve_system_save_iip!(u,f,u0,p,n)
  @inbounds u[1] = u0
  @inbounds for i in 1:length(u)-1
    f(u[i+1],u[i],p)
  end
  u
end
p = (0.02,10.0,28.0,8/3)
u = [Vector{Float64}(undef,3) for i in 1:1000]
@btime solve_system_save_iip!(u,lorenz!,[1.0,0.0,0.0],p,1000)



  6.142 μs (1 allocation: 80 bytes)




1000-element Vector{Vector{Float64}}:
 [1.0, 0.0, 0.0]
 [0.8, 0.56, 0.0]
 [0.752, 0.9968000000000001, 0.008960000000000001]
 [0.80096, 1.3978492416000001, 0.023474005333333336]
 [0.92033784832, 1.8180538219817644, 0.04461448495326095]
 [1.099881043052353, 2.296260732619613, 0.07569952060880669]
 [1.339156980965805, 2.864603692722823, 0.12217448583728006]
 [1.6442463233172087, 3.5539673118971193, 0.19238159391549564]
 [2.026190521033191, 4.397339452147425, 0.2989931959555302]
 [2.5004203072560376, 5.431943011293093, 0.4612438424853632]
 [3.0867248480634486, 6.700473453723668, 0.7082869831520391]
 [3.8094745691954923, 8.25130415895562, 1.0841620354518975]
 [4.697840487147518, 10.136982080467158, 1.655002727352565]
 ⋮
 [10.49730559336705, 4.660822889495989, 35.336831929448614]
 [9.330009052592839, 3.0272670946941713, 34.430722536963344]
 [8.069460661013105, 1.766747763108672, 33.159305922954225]
 [6.8089180814322185, 0.8987564841782779, 31.6759436385101]
 [5.6268857619814305, 0.3801973723631693, 30.108951163308078]
 [4.577548084057778, 0.13525687944525802, 28.545926978224173]
 [3.6890898431352737, 0.08257160199224252, 27.035860436772758]
 [2.9677861949066675, 0.15205611935372762, 25.600040161309696]
 [2.4046401797960795, 0.2914663505185634, 24.24373008707723]
 [1.9820054139405763, 0.46628657468365653, 22.964748583050085]
 [1.6788616460891923, 0.6565587545689172, 21.758445642263496]
 [1.4744010677851374, 0.8530017039412324, 20.62004063423844]





and now we multithread:


using Base.Threads
function lorenz_mt!(du,u,p)
  α,σ,ρ,β = p
  let du=du, u=u, p=p
    Threads.@threads for i in 1:3
      @inbounds begin
        if i == 1
          du[1] = u[1] + α*(σ*(u[2]-u[1]))
        elseif i == 2
          du[2] = u[2] + α*(u[1]*(ρ-u[3]) - u[2])
        else
          du[3] = u[3] + α*(u[1]*u[2] - β*u[3])
        end
        nothing
      end
    end
  end
  nothing
end
function solve_system_save_iip!(u,f,u0,p,n)
  @inbounds u[1] = u0
  @inbounds for i in 1:length(u)-1
    f(u[i+1],u[i],p)
  end
  u
end
p = (0.02,10.0,28.0,8/3)
u = [Vector{Float64}(undef,3) for i in 1:1000]
@btime solve_system_save_iip!(u,lorenz_mt!,[1.0,0.0,0.0],p,1000);



  1.429 ms (6994 allocations: 671.28 KiB)





Parallelism doesn’t always make things faster. There are two costs associated with this code. For one, we had to go to the slower heap+mutation version, so its implementation starting point is slower. But secondly, and more importantly, the cost of spinning a new thread is non-negligible. In fact, here we can see that it even needs to make a small allocation for the new context. The total cost is on the order of It’s on the order of 50ns: not huge, but something to take note of. So what we’ve done is taken almost free calculations and made them ~50ns by making each in a different thread, instead of just having it be one thread with one call stack.

The moral of the story is that you need to make sure that there’s enough work per thread in order to effectively accelerate a program with parallelism.




5.2.4 Data-Parallel Problems

So not every setup is amenable to parallelism. Dynamical systems are notorious for being quite difficult to parallelize because the dependency of the future time step on the previous time step is clear, meaning that one cannot easily “parallelize through time” (though it is possible, which we will study later).

However, one common way that these systems are generally parallelized is in their inputs. The following questions allow for independent simulations:


	What steady state does an input u0 go to for some list/region of initial conditions?

	How does the solution very when I use a different p?



The problem has a few descriptions. For one, it’s called an embarrassingly parallel problem since the problem can remain largely intact to solve the parallelism problem. To solve this, we can use the exact same solve_system_save_iip!, and just change how we are calling it. Secondly, this is called a data parallel problem, since it parallelized by splitting up the input data (here, the possible u0 or ps) and acting on them independently.


5.2.4.1 Multithreaded Parameter Searches

Now let’s multithread our parameter search. Let’s say we wanted to compute the mean of the values in the trajectory. For a single input pair, we can compute that like:


using Statistics
function compute_trajectory_mean(u0,p)
  u = Vector{typeof(@SVector([1.0,0.0,0.0]))}(undef,1000)
  solve_system_save!(u,lorenz,u0,p,1000);
  mean(u)
end
@btime compute_trajectory_mean(@SVector([1.0,0.0,0.0]),p)



  6.047 μs (3 allocations: 23.52 KiB)




3-element SVector{3, Float64} with indices SOneTo(3):
 -0.3114996234648468
 -0.30974901748976497
 26.02460355858298





We can make this faster by preallocating the cache vector u. For example, we can globalize it:


u = Vector{typeof(@SVector([1.0,0.0,0.0]))}(undef,1000)
function compute_trajectory_mean2(u0,p)
  # u is automatically captured
  solve_system_save!(u,lorenz,u0,p,1000);
  mean(u)
end
@btime compute_trajectory_mean2(@SVector([1.0,0.0,0.0]),p)



  5.879 μs (3 allocations: 112 bytes)




3-element SVector{3, Float64} with indices SOneTo(3):
 -0.3114996234648468
 -0.30974901748976497
 26.02460355858298





But this is still allocating? The issue with this code is that u is a global, and captured globals cannot be inferred because their type can change at any time. Thus what we can do instead is capture a constant:


const _u_cache = Vector{typeof(@SVector([1.0,0.0,0.0]))}(undef,1000)
function compute_trajectory_mean3(u0,p)
  # u is automatically captured
  solve_system_save!(_u_cache,lorenz,u0,p,1000);
  mean(_u_cache)
end
@btime compute_trajectory_mean3(@SVector([1.0,0.0,0.0]),p)



  5.841 μs (1 allocation: 32 bytes)




3-element SVector{3, Float64} with indices SOneTo(3):
 -0.3114996234648468
 -0.30974901748976497
 26.02460355858298





Now it’s just allocating the output. The other way to do this is to use a closure which encapsulates the cache data:


function _compute_trajectory_mean4(u,u0,p)
  solve_system_save!(u,lorenz,u0,p,1000);
  mean(u)
end
compute_trajectory_mean4(u0,p) = _compute_trajectory_mean4(_u_cache,u0,p)
@btime compute_trajectory_mean4(@SVector([1.0,0.0,0.0]),p)



  5.841 μs (1 allocation: 32 bytes)




3-element SVector{3, Float64} with indices SOneTo(3):
 -0.3114996234648468
 -0.30974901748976497
 26.02460355858298





This is the same, but a bit more explicit. Now let’s create our parameter search function. Let’s take a sample of parameters:


ps = [(0.02,10.0,28.0,8/3) .* (1.0,rand(3)...) for i in 1:1000]



1000-element Vector{NTuple{4, Float64}}:
 (0.02, 2.661743468581018, 1.816262343059532, 2.4899895945870556)
 (0.02, 4.0686348870357145, 8.700987523301642, 1.761742002692603)
 (0.02, 2.8539163831161094, 10.784842793602003, 2.512798743500033)
 (0.02, 2.5615043833314886, 1.8600996828709913, 1.1917510589666689)
 (0.02, 6.288231133232271, 22.56812871344512, 0.6845975690521995)
 (0.02, 4.806661073110588, 5.7811656463351495, 1.6450263219634276)
 (0.02, 0.011628447192932878, 11.683024613305491, 0.8283301998665407)
 (0.02, 9.678382932879654, 4.045882884107959, 0.775491995984271)
 (0.02, 5.739052650057942, 10.793825996467888, 1.6797130344523667)
 (0.02, 2.5014921099227228, 14.96055693277241, 0.9965483787512461)
 (0.02, 3.856024647360823, 25.36399345473564, 2.1950784878373413)
 (0.02, 4.454830323546993, 15.215257008264066, 0.9270395727292788)
 (0.02, 9.383458493441186, 12.079100599204864, 2.375362368627917)
 ⋮
 (0.02, 7.431071870892193, 16.780916593986717, 2.3865211728369227)
 (0.02, 3.065139990163477, 11.503519359004102, 2.306091143503767)
 (0.02, 5.889657348225702, 9.213206324473258, 0.4245301305463925)
 (0.02, 4.965070846540881, 9.692075431747528, 2.038158099148036)
 (0.02, 7.224274378348513, 23.42926882441759, 2.6391726227832177)
 (0.02, 7.464564926714182, 21.78006855924034, 1.2232901285380904)
 (0.02, 4.354535827062547, 26.55070452421278, 2.1011335499376886)
 (0.02, 6.092916668883424, 6.624696758410617, 1.2647396892612541)
 (0.02, 4.827984244172735, 26.0130519265037, 2.4425958678725572)
 (0.02, 1.4553724037577542, 9.706402890878655, 2.5702390335919287)
 (0.02, 6.885574982542338, 5.4533465610553975, 2.584516208109622)
 (0.02, 8.0580595870993, 8.424826615047676, 2.323251963096615)





And let’s get the mean of the trajectory for each of the parameters.


serial_out = map(p -> compute_trajectory_mean4(@SVector([1.0,0.0,0.0]),p),ps)



1000-element Vector{SVector{3, Float64}}:
 [1.3185579600610315, 1.3265537042322202, 0.71184319572457]
 [3.316488750780838, 3.350854622469355, 6.9322135233986355]
 [4.8130062191488365, 4.882364608868149, 9.375999519621967]
 [0.9796703242189865, 0.9799130489140009, 0.7821308183791994]
 [-0.11135963720505923, -0.1016914151267988, 21.426202835482748]
 [2.7178877761925784, 2.7367002885344927, 4.5519005848978695]
 [1.4454563041145023, 4.914216207628298, 7.900288259903439]
 [1.4835365171101669, 1.4863712458404346, 2.8893802321793904]
 [-2.947841655217941, -3.0220329648931257, 8.561265417069299]
 [-2.2460168174565984, -2.22353190872851, 12.629221940352418]
 [-0.007805589441260077, -0.03709391659321029, 20.31341480135003]
 [0.48588968300384994, 0.4194897432337476, 13.268294490898226]
 [-1.4399677454622704, -1.468917579096333, 8.891037380302041]
 ⋮
 [-3.857157852457519, -3.8420927844115074, 14.284654086678497]
 [4.701392882233821, 4.765007958815693, 9.910937185333282]
 [0.05193019481017693, 0.012343547640338626, 7.33063258244436]
 [-3.173489743018476, -3.221774042325809, 7.635890893510741]
 [-0.16426908483196312, -0.18382537234378937, 20.61544861501631]
 [0.0317766042587186, 0.06762441395585962, 19.635654034221172]
 [0.3499486312542944, 0.27714110659326613, 21.79223112210073]
 [2.4300470729761336, 2.443007379949948, 5.177763378200959]
 [0.5665705444353986, 0.44356075492595093, 20.989592841208655]
 [4.602069184329931, 4.7302319219540765, 8.383135683788902]
 [3.3014620817569083, 3.318835986140602, 4.259346726387789]
 [3.942364673542071, 3.9618439476874547, 7.019798549726913]





Now let’s do this with multithreading:


function tmap(f,ps)
  out = Vector{typeof(@SVector([1.0,0.0,0.0]))}(undef,1000)
  Threads.@threads for i in 1:1000
    # each loop part is using a different part of the data
    out[i] = f(ps[i])
  end
  out
end
threaded_out = tmap(p -> compute_trajectory_mean4(@SVector([1.0,0.0,0.0]),p),ps)



1000-element Vector{SVector{3, Float64}}:
 [1.3185579600610315, 1.3265537042322202, 0.71184319572457]
 [3.316488750780838, 3.350854622469355, 6.9322135233986355]
 [4.8130062191488365, 4.882364608868149, 9.375999519621967]
 [0.9796703242189865, 0.9799130489140009, 0.7821308183791994]
 [-0.11135963720505923, -0.1016914151267988, 21.426202835482748]
 [2.7178877761925784, 2.7367002885344927, 4.5519005848978695]
 [1.4454563041145023, 4.914216207628298, 7.900288259903439]
 [1.4835365171101669, 1.4863712458404346, 2.8893802321793904]
 [-2.947841655217941, -3.0220329648931257, 8.561265417069299]
 [-2.2460168174565984, -2.22353190872851, 12.629221940352418]
 [-0.007805589441260077, -0.03709391659321029, 20.31341480135003]
 [0.48588968300384994, 0.4194897432337476, 13.268294490898226]
 [-1.4399677454622704, -1.468917579096333, 8.891037380302041]
 ⋮
 [-3.857157852457519, -3.8420927844115074, 14.284654086678497]
 [4.701392882233821, 4.765007958815693, 9.910937185333282]
 [0.05193019481017693, 0.012343547640338626, 7.33063258244436]
 [-3.173489743018476, -3.221774042325809, 7.635890893510741]
 [-0.16426908483196312, -0.18382537234378937, 20.61544861501631]
 [0.0317766042587186, 0.06762441395585962, 19.635654034221172]
 [0.3499486312542944, 0.27714110659326613, 21.79223112210073]
 [2.4300470729761336, 2.443007379949948, 5.177763378200959]
 [0.5665705444353986, 0.44356075492595093, 20.989592841208655]
 [4.602069184329931, 4.7302319219540765, 8.383135683788902]
 [3.3014620817569083, 3.318835986140602, 4.259346726387789]
 [3.942364673542071, 3.9618439476874547, 7.019798549726913]





Let’s check the output:


serial_out - threaded_out



1000-element Vector{SVector{3, Float64}}:
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 ⋮
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]





Oh no, we don’t get the same answer! What happened?

The answer is the caching. Every single thread is using _u_cache as the cache, and so while one is writing into it the other is reading out of it, and thus is getting the value written to it from the wrong cache!

To fix this, what we need is a different heap per thread:


const _u_cache_threads = [Vector{typeof(@SVector([1.0,0.0,0.0]))}(undef,1000) for i in 1:Threads.nthreads()]
function compute_trajectory_mean5(u0,p)
  # u is automatically captured
  solve_system_save!(_u_cache_threads[Threads.threadid()],lorenz,u0,p,1000);
  mean(_u_cache_threads[Threads.threadid()])
end
@btime compute_trajectory_mean5(@SVector([1.0,0.0,0.0]),p)



  5.708 μs (1 allocation: 32 bytes)




3-element SVector{3, Float64} with indices SOneTo(3):
 -0.3114996234648468
 -0.30974901748976497
 26.02460355858298






serial_out = map(p -> compute_trajectory_mean5(@SVector([1.0,0.0,0.0]),p),ps)
threaded_out = tmap(p -> compute_trajectory_mean5(@SVector([1.0,0.0,0.0]),p),ps)
serial_out - threaded_out



1000-element Vector{SVector{3, Float64}}:
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 ⋮
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]
 [0.0, 0.0, 0.0]






@btime serial_out = map(p -> compute_trajectory_mean5(@SVector([1.0,0.0,0.0]),p),ps)



  5.820 ms (3 allocations: 23.50 KiB)




1000-element Vector{SVector{3, Float64}}:
 [1.3185579600610315, 1.3265537042322202, 0.71184319572457]
 [3.316488750780838, 3.350854622469355, 6.9322135233986355]
 [4.8130062191488365, 4.882364608868149, 9.375999519621967]
 [0.9796703242189865, 0.9799130489140009, 0.7821308183791994]
 [-0.11135963720505923, -0.1016914151267988, 21.426202835482748]
 [2.7178877761925784, 2.7367002885344927, 4.5519005848978695]
 [1.4454563041145023, 4.914216207628298, 7.900288259903439]
 [1.4835365171101669, 1.4863712458404346, 2.8893802321793904]
 [-2.947841655217941, -3.0220329648931257, 8.561265417069299]
 [-2.2460168174565984, -2.22353190872851, 12.629221940352418]
 [-0.007805589441260077, -0.03709391659321029, 20.31341480135003]
 [0.48588968300384994, 0.4194897432337476, 13.268294490898226]
 [-1.4399677454622704, -1.468917579096333, 8.891037380302041]
 ⋮
 [-3.857157852457519, -3.8420927844115074, 14.284654086678497]
 [4.701392882233821, 4.765007958815693, 9.910937185333282]
 [0.05193019481017693, 0.012343547640338626, 7.33063258244436]
 [-3.173489743018476, -3.221774042325809, 7.635890893510741]
 [-0.16426908483196312, -0.18382537234378937, 20.61544861501631]
 [0.0317766042587186, 0.06762441395585962, 19.635654034221172]
 [0.3499486312542944, 0.27714110659326613, 21.79223112210073]
 [2.4300470729761336, 2.443007379949948, 5.177763378200959]
 [0.5665705444353986, 0.44356075492595093, 20.989592841208655]
 [4.602069184329931, 4.7302319219540765, 8.383135683788902]
 [3.3014620817569083, 3.318835986140602, 4.259346726387789]
 [3.942364673542071, 3.9618439476874547, 7.019798549726913]






@btime threaded_out = tmap(p -> compute_trajectory_mean5(@SVector([1.0,0.0,0.0]),p),ps)



  5.829 ms (9 allocations: 24.12 KiB)




1000-element Vector{SVector{3, Float64}}:
 [1.3185579600610315, 1.3265537042322202, 0.71184319572457]
 [3.316488750780838, 3.350854622469355, 6.9322135233986355]
 [4.8130062191488365, 4.882364608868149, 9.375999519621967]
 [0.9796703242189865, 0.9799130489140009, 0.7821308183791994]
 [-0.11135963720505923, -0.1016914151267988, 21.426202835482748]
 [2.7178877761925784, 2.7367002885344927, 4.5519005848978695]
 [1.4454563041145023, 4.914216207628298, 7.900288259903439]
 [1.4835365171101669, 1.4863712458404346, 2.8893802321793904]
 [-2.947841655217941, -3.0220329648931257, 8.561265417069299]
 [-2.2460168174565984, -2.22353190872851, 12.629221940352418]
 [-0.007805589441260077, -0.03709391659321029, 20.31341480135003]
 [0.48588968300384994, 0.4194897432337476, 13.268294490898226]
 [-1.4399677454622704, -1.468917579096333, 8.891037380302041]
 ⋮
 [-3.857157852457519, -3.8420927844115074, 14.284654086678497]
 [4.701392882233821, 4.765007958815693, 9.910937185333282]
 [0.05193019481017693, 0.012343547640338626, 7.33063258244436]
 [-3.173489743018476, -3.221774042325809, 7.635890893510741]
 [-0.16426908483196312, -0.18382537234378937, 20.61544861501631]
 [0.0317766042587186, 0.06762441395585962, 19.635654034221172]
 [0.3499486312542944, 0.27714110659326613, 21.79223112210073]
 [2.4300470729761336, 2.443007379949948, 5.177763378200959]
 [0.5665705444353986, 0.44356075492595093, 20.989592841208655]
 [4.602069184329931, 4.7302319219540765, 8.383135683788902]
 [3.3014620817569083, 3.318835986140602, 4.259346726387789]
 [3.942364673542071, 3.9618439476874547, 7.019798549726913]








5.2.5 Hierarchical Task-Based Multithreading and Dynamic Scheduling

The major change in Julia v1.3 is that Julia’s Tasks, which are traditionally its green threads interface, are now the basis of its multithreading infrastructure. This means that all independent threads are parallelized, and a new interface for multithreading will exist that works by spawning threads.

This implementation follows Go’s goroutines and the classic multithreading interface of Cilk. There is a Julia-level scheduler that handles the multithreading to put different tasks on different vCPU threads. A benefit from this is hierarchical multithreading. Since Julia’s tasks can spawn tasks, what can happen is a task can create tasks which create tasks which etc. In Julia (/Go/Cilk), this is then seen as a single pool of tasks which it can schedule, and thus it will still make sure only N are running at a time (as opposed to the naive implementation where the total number of running threads is equal then multiplied). This is essential for numerical performance because running multiple compute threads on a single CPU thread requires constant context switching between the threads, which will slow down the computations.

To directly use the task-based interface, simply use Threads.@spawn to spawn new tasks. For example:


function tmap2(f,ps)
  tasks = [Threads.@spawn f(ps[i]) for i in 1:1000]
  out = [fetch(t) for t in tasks]
end
threaded_out = tmap2(p -> compute_trajectory_mean5(@SVector([1.0,0.0,0.0]),p),ps)



1000-element Vector{SVector{3, Float64}}:
 [1.3185579600610315, 1.3265537042322202, 0.71184319572457]
 [3.316488750780838, 3.350854622469355, 6.9322135233986355]
 [4.8130062191488365, 4.882364608868149, 9.375999519621967]
 [0.9796703242189865, 0.9799130489140009, 0.7821308183791994]
 [-0.11135963720505923, -0.1016914151267988, 21.426202835482748]
 [2.7178877761925784, 2.7367002885344927, 4.5519005848978695]
 [1.4454563041145023, 4.914216207628298, 7.900288259903439]
 [1.4835365171101669, 1.4863712458404346, 2.8893802321793904]
 [-2.947841655217941, -3.0220329648931257, 8.561265417069299]
 [-2.2460168174565984, -2.22353190872851, 12.629221940352418]
 [-0.007805589441260077, -0.03709391659321029, 20.31341480135003]
 [0.48588968300384994, 0.4194897432337476, 13.268294490898226]
 [-1.4399677454622704, -1.468917579096333, 8.891037380302041]
 ⋮
 [-3.857157852457519, -3.8420927844115074, 14.284654086678497]
 [4.701392882233821, 4.765007958815693, 9.910937185333282]
 [0.05193019481017693, 0.012343547640338626, 7.33063258244436]
 [-3.173489743018476, -3.221774042325809, 7.635890893510741]
 [-0.16426908483196312, -0.18382537234378937, 20.61544861501631]
 [0.0317766042587186, 0.06762441395585962, 19.635654034221172]
 [0.3499486312542944, 0.27714110659326613, 21.79223112210073]
 [2.4300470729761336, 2.443007379949948, 5.177763378200959]
 [0.5665705444353986, 0.44356075492595093, 20.989592841208655]
 [4.602069184329931, 4.7302319219540765, 8.383135683788902]
 [3.3014620817569083, 3.318835986140602, 4.259346726387789]
 [3.942364673542071, 3.9618439476874547, 7.019798549726913]





However, if we check the timing we see:


@btime tmap2(p -> compute_trajectory_mean5(@SVector([1.0,0.0,0.0]),p),ps)



  6.299 ms (6005 allocations: 562.70 KiB)




1000-element Vector{SVector{3, Float64}}:
 [1.3185579600610315, 1.3265537042322202, 0.71184319572457]
 [3.316488750780838, 3.350854622469355, 6.9322135233986355]
 [4.8130062191488365, 4.882364608868149, 9.375999519621967]
 [0.9796703242189865, 0.9799130489140009, 0.7821308183791994]
 [-0.11135963720505923, -0.1016914151267988, 21.426202835482748]
 [2.7178877761925784, 2.7367002885344927, 4.5519005848978695]
 [1.4454563041145023, 4.914216207628298, 7.900288259903439]
 [1.4835365171101669, 1.4863712458404346, 2.8893802321793904]
 [-2.947841655217941, -3.0220329648931257, 8.561265417069299]
 [-2.2460168174565984, -2.22353190872851, 12.629221940352418]
 [-0.007805589441260077, -0.03709391659321029, 20.31341480135003]
 [0.48588968300384994, 0.4194897432337476, 13.268294490898226]
 [-1.4399677454622704, -1.468917579096333, 8.891037380302041]
 ⋮
 [-3.857157852457519, -3.8420927844115074, 14.284654086678497]
 [4.701392882233821, 4.765007958815693, 9.910937185333282]
 [0.05193019481017693, 0.012343547640338626, 7.33063258244436]
 [-3.173489743018476, -3.221774042325809, 7.635890893510741]
 [-0.16426908483196312, -0.18382537234378937, 20.61544861501631]
 [0.0317766042587186, 0.06762441395585962, 19.635654034221172]
 [0.3499486312542944, 0.27714110659326613, 21.79223112210073]
 [2.4300470729761336, 2.443007379949948, 5.177763378200959]
 [0.5665705444353986, 0.44356075492595093, 20.989592841208655]
 [4.602069184329931, 4.7302319219540765, 8.383135683788902]
 [3.3014620817569083, 3.318835986140602, 4.259346726387789]
 [3.942364673542071, 3.9618439476874547, 7.019798549726913]





Threads.@threads is built on the same multithreading infrastructure, so why is this so much slower? The reason is because Threads.@threads employs static scheduling while Threads.@spawn is using dynamic scheduling. Dynamic scheduling is the model of allowing the runtime to determine the ordering and scheduling of processes, i.e. what tasks will run run where and when. Julia’s task-based multithreading system has a thread scheduler which will automatically do this for you in the background, but because this is done at runtime it will have overhead. Static scheduling is the model of pre-determining where and when tasks will run, instead of allowing this to be determined at runtime. Threads.@threads is “quasi-static” in the sense that it cuts the loop so that it spawns only as many tasks as there are threads, essentially assigning one thread for even chunks of the input data.

Does this lack of runtime overhead mean that static scheduling is “better”? No, it simply has trade-offs. Static scheduling assumes that the runtime of each block is the same. For this specific case where there are fixed number of loop iterations for the dynamical systems, we know that every compute_trajectory_mean5 costs exactly the same, and thus this will be more efficient. However, There are many cases where this might not be efficient. For example:


function sleepmap_static()
  out = Vector{Int}(undef,24)
  Threads.@threads for i in 1:24
    sleep(i/10)
    out[i] = i
  end
  out
end
isleep(i) = (sleep(i/10);i)
function sleepmap_spawn()
  tasks = [Threads.@spawn(isleep(i)) for i in 1:24]
  out = [fetch(t) for t in tasks]
end

@btime sleepmap_static()
@btime sleepmap_spawn()



  30.034 s (1050 allocations: 30.61 KiB)




  2.401 s (314 allocations: 17.58 KiB)




24-element Vector{Int64}:
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24





The reason why this occurs is because of how the static scheduling had chunked my calculation. On my computer:


Threads.nthreads()



1





This means that there are 6 tasks that are created by Threads.@threads. The first takes:


sum(i/10 for i in 1:4)



1.0





1 second, while the next group takes longer, then the next, etc. while the last takes:


sum(i/10 for i in 21:24)



9.0





9 seconds (which is precisely the result!). Thus by unevenly distributing the runtime, we run as fast as the slowest thread. However, dynamic scheduling allows new tasks to immediately run when another is finished, meaning that the in that case the shorter tasks tend to be piled together, causing a faster execution. Thus whether dynamic or static scheduling is beneficial is dependent on the problem and the implementation of the static schedule.


5.2.5.1 Possible Project

Note that this can extend to external library calls as well. FFTW.jl recently gained support for this. A possible final project would be to do a similar change to OpenBLAS.





5.3 A Teaser for Alternative Parallelism Models


5.3.1 Simplest Parallel Code


A = rand(10000,10000)
B = rand(10000,10000)
A*B



10000×10000 Matrix{Float64}:
 2463.28  2484.67  2487.25  2477.7   …  2464.75  2490.18  2491.86  2503.36
 2447.21  2494.88  2471.08  2480.74     2469.6   2470.4   2491.64  2490.5
 2474.62  2525.47  2501.42  2494.88     2492.53  2495.11  2519.12  2519.71
 2470.08  2518.1   2490.84  2487.88     2459.66  2479.9   2495.36  2495.3
 2479.98  2510.07  2506.26  2500.01     2499.13  2512.63  2519.51  2520.74
 2466.04  2503.3   2481.08  2482.24  …  2487.4   2476.56  2508.55  2501.28
 2470.41  2489.84  2485.18  2483.12     2479.58  2476.96  2497.44  2494.88
 2461.37  2491.17  2497.99  2479.09     2477.8   2490.45  2509.99  2502.0
 2458.89  2496.22  2492.85  2466.29     2458.91  2486.23  2508.45  2484.82
 2476.35  2493.93  2490.9   2486.08     2483.93  2465.65  2497.97  2507.89
 2482.35  2537.17  2503.0   2492.01  …  2475.94  2494.81  2526.75  2508.65
 2469.93  2501.11  2500.48  2495.7      2480.14  2484.73  2509.16  2495.8
 2497.57  2536.58  2518.59  2517.98     2515.92  2522.95  2555.47  2531.25
    ⋮                                ⋱                             
 2471.92  2512.54  2496.62  2481.82     2466.72  2498.27  2502.58  2491.44
 2472.8   2501.22  2473.79  2481.92     2481.26  2498.27  2508.53  2493.0
 2465.26  2519.81  2502.57  2501.95  …  2467.54  2509.17  2513.39  2493.96
 2424.82  2464.42  2460.31  2445.33     2441.78  2434.28  2456.03  2457.61
 2467.45  2515.2   2474.85  2475.8      2490.47  2479.51  2494.64  2495.11
 2477.33  2495.77  2495.96  2496.57     2485.01  2499.49  2520.06  2508.09
 2464.71  2524.69  2504.97  2484.19     2484.81  2507.81  2505.92  2514.59
 2479.76  2503.96  2509.69  2509.93  …  2496.06  2488.59  2514.41  2508.22
 2492.26  2540.64  2521.38  2508.67     2494.83  2505.64  2527.83  2524.92
 2467.37  2518.59  2474.52  2480.55     2476.05  2476.99  2488.23  2499.55
 2475.79  2512.08  2496.29  2489.53     2488.67  2496.96  2504.07  2508.03
 2486.38  2516.96  2508.35  2508.26     2493.73  2495.47  2528.63  2514.49





If you are using a computer that has N cores, then this will use N cores. Try it and look at your resource usage!



5.3.2 Array-Based Parallelism

The simplest form of parallelism is array-based parallelism. The idea is that you use some construction of an array whose operations are already designed to be parallel under the hood. In Julia, some examples of this are:


	DistributedArrays (Distributed Computing)

	Elemental

	MPIArrays

	CuArrays (GPUs)



This is not a Julia specific idea either.



5.3.3 BLAS and Standard Libraries

The basic linear algebra calls are all handled by a set of libraries which follow the same interface known as BLAS (Basic Linear Algebra Subroutines). It’s divided into 3 portions:


	BLAS1: Element-wise operations (O(n))

	BLAS2: Matrix-vector operations (O(n^2))

	BLAS3: Matrix-matrix operations (O(n^3))



BLAS implementations are highly optimized, like OpenBLAS and Intel MKL, so every numerical language and library essentially uses similar underlying BLAS implementations. Extensions to these, known as LAPACK, include operations like factorizations, and are included in these standard libraries. These are all multithreaded. The reason why this is a location to target is because the operation count is high enough that parallelism can be made efficient even when only targeting this level: a matrix multiplication can take on the order of seconds, minutes, hours, or even days, and these are all highly parallel operations. This means you can get away with a bunch just by parallelizing at this level, which happens to be a bottleneck for a lot scientific computing codes.

This is also commonly the level at which GPU computing occurs in machine learning libraries for reasons which we will explain later.



5.3.4 MPI

Well, this is a big topic and we’ll address this one later!




5.4 Conclusion

The easiest forms of parallelism are:


	Embarrassingly parallel

	Array-level parallelism (built into linear algebra)



Exploit these when possible.
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6 The Different Flavors of Parallelism


6.1 Youtube Video Link

Now that you are aware of the basics of parallel computing, let’s give a high level overview of the differences between different modes of parallelism.



6.2 Lowest Level: SIMD

Recall SIMD, the idea that processors can run multiple commands simultaneously on specially structured data. “Single Instruction Multiple Data”. SIMD is parallelism within a single core.


6.2.1 High Level Idea of SIMD

Calculations can occur in parallel in the processor if there is sufficient structure in the computation.



6.2.2 How to do SIMD

The simplest way to do SIMD is simply to make sure that your values are aligned. If they are, then great, LLVM’s autovectorizer pass has a good chance of automatic vectorization (in the world of computing, “SIMD” is synonymous with vectorization since it is taking specific values and instead computing on small vectors. That is not to be confused with “vectorization” in the sense of Python/R/MATLAB, which is a programming style which prefers using C-defined primitive functions, like broadcast or matrix multiplication).

You can check for auto-vectorization inside of the LLVM IR by looking for statements like:

%wide.load24 = load <4 x double>, <4 x double> addrspac(13)* %46, align 8
; └
; ┌ @ float.jl:395 within `+'
%47 = fadd <4 x double> %wide.load, %wide.load24

which means that 4 additions are happening simultaneously. The amount of vectorization is heavily dependent on your architecture. The ancient form of SIMD, the SSE(2) instructions, required that your data was aligned. Now there’s a bit more leeway, but generally it holds that making your the data you’re trying to SIMD over is aligned. Thus there can be major differences in computing using a struct of array format instead of an arrays of structs format. For example:


struct MyComplex
  real::Float64
  imag::Float64
end
arr = [MyComplex(rand(),rand()) for i in 1:100]



100-element Vector{MyComplex}:
 MyComplex(0.864243883701615, 0.5144747553506801)
 MyComplex(0.05735737065894653, 0.5639780616632811)
 MyComplex(0.4740509564146792, 0.6480484082987756)
 MyComplex(0.5151841145829638, 0.36690011024515545)
 MyComplex(0.12330012456740602, 0.48241326792187633)
 MyComplex(0.9267492628826898, 0.9814061640057827)
 MyComplex(0.7305101336005437, 0.11430840238873652)
 MyComplex(0.8913878476226529, 0.9529970762391867)
 MyComplex(0.8701038830630198, 0.14907535282462125)
 MyComplex(0.7474959415045472, 0.8353168041921287)
 MyComplex(0.5121215594151813, 0.2687716942634697)
 MyComplex(0.7304819050043474, 0.09807189780586123)
 MyComplex(0.5427189687290516, 0.49476140237599864)
 ⋮
 MyComplex(0.02404409263905183, 0.7916763505693792)
 MyComplex(0.8095851788431064, 0.44346289559972407)
 MyComplex(0.9202940275332568, 0.2186422967346423)
 MyComplex(0.026246772580002853, 0.42729100463274416)
 MyComplex(0.12912311431724743, 0.3750032985258802)
 MyComplex(0.003605108648061295, 0.5631883735011303)
 MyComplex(0.2350372299291077, 0.4087588265135109)
 MyComplex(0.9857658413507032, 0.21735419209449247)
 MyComplex(0.7918461566729901, 0.3166129412358768)
 MyComplex(0.7708686755501205, 0.7351988354705484)
 MyComplex(0.8141509453454774, 0.9478499729828771)
 MyComplex(0.022052542146414944, 0.11315172742519874)





is represented in memory as

[real1,imag1,real2,imag2,...]

while the struct of array formats are


struct MyComplexes
  real::Vector{Float64}
  imag::Vector{Float64}
end
arr2 = MyComplexes(rand(100),rand(100))



MyComplexes([0.7503010129792073, 0.16664641769036437, 0.2289416757613214, 0.12331934777310205, 0.6755109319525409, 0.10486046469505839, 0.9174214843417419, 0.1458793624208644, 0.3506095365785967, 0.9681068839037077  …  0.5594682541268072, 0.4056981977303342, 0.5535395737947043, 0.9533416200157182, 0.44792101262557427, 0.001943665955839946, 0.15315156573110122, 0.4746566166510091, 0.13755811711584587, 0.1567822710854524], [0.16025102454852058, 0.4057117908186394, 0.5678681496506867, 0.6697867673928453, 0.23412390885585066, 0.8700298377713591, 0.9180869290692159, 0.5862544761893255, 0.4291598687353583, 0.13455662550967495  …  0.8757952465642873, 0.08320215020161581, 0.983782241239151, 0.02392100416793741, 0.06126797763406511, 0.6917542817685376, 0.8383162989564018, 0.40613216604121993, 0.2862143162600358, 0.3821056005278858])





Now let’s check what happens when we perform a reduction:


using InteractiveUtils
Base.:+(x::MyComplex,y::MyComplex) = MyComplex(x.real+y.real,x.imag+y.imag)
Base.:/(x::MyComplex,y::Int) = MyComplex(x.real/y,x.imag/y)
average(x::Vector{MyComplex}) = sum(x)/length(x)
@code_llvm average(arr)



;  @ In[5]:4 within `average`
define void @julia_average_1306([2 x double]* noalias nocapture noundef nonnull sret([2 x double]) align 8 dereferenceable(16) %0




, {}* noundef nonnull align 16 dereferenceable(40) %1) #0 {
top:
  %2 = alloca [4 x {}*], align 8
  %3 = alloca <2 x double>, align 16
  %tmpcast = bitcast <2 x double>* %3 to [2 x double]*
  %.sub = getelementptr inbounds [4 x {}*], [4 x {}*]* %2, i64 0, i64 0
; ┌ @ reducedim.jl:994 within `sum`
; │┌ @ reducedim.jl:994 within `#sum#808`
; ││┌ @ reducedim.jl:998 within `_sum`
; │││┌ @ reducedim.jl:998 within `#_sum#810`
; ││││┌ @ reducedim.jl:999 within `_sum`
; │││││┌ @ reducedim.jl:999 within `#_sum#811`
; ││││││┌ @ reducedim.jl:357 within `mapreduce`
; │││││││┌ @ reducedim.jl:357 within `#mapreduce#801`
; ││││││││┌ @ reducedim.jl:365 within `_mapreduce_dim`
; │││││││││┌ @ reduce.jl:424 within `_mapreduce`
; ││││││││││┌ @ indices.jl:486 within `LinearIndices`
; │││││││││││┌ @ abstractarray.jl:98 within `axes`
; ││││││││││││┌ @ array.jl:149 within `size`
               %4 = bitcast {}* %1 to { i8*, i64, i16, i16, i32 }*
               %5 = getelementptr inbounds { i8*, i64, i16, i16, i32 }, { i8*, i64, i16, i16, i32 }* %4, i64 0, i32 1
               %6 = load i64, i64* %5, align 8
; ││││││││││└└└
; ││││││││││ @ reduce.jl:426 within `_mapreduce`
            switch i64 %6, label %L14 [
    i64 0, label %L8
    i64 1, label %L12
  ]

L8:                                               ; preds = %top
; ││││││││││ @ reduce.jl:427 within `_mapreduce`
            store {}* inttoptr (i64 140528290744272 to {}*), {}** %.sub, align 8
            %7 = getelementptr inbounds [4 x {}*], [4 x {}*]* %2, i64 0, i64 1
            store {}* inttoptr (i64 140528286663936 to {}*), {}** %7, align 8
            %8 = getelementptr inbounds [4 x {}*], [4 x {}*]* %2, i64 0, i64 2
            store {}* %1, {}** %8, align 8
            %9 = getelementptr inbounds [4 x {}*], [4 x {}*]* %2, i64 0, i64 3
            store {}* inttoptr (i64 140528308106464 to {}*), {}** %9, align 8
            %10 = call nonnull {}* @ijl_invoke({}* inttoptr (i64 140528305574176 to {}*), {}** nonnull %.sub, i32 4, {}* inttoptr (i64 140528487214832 to {}*))
            call void @llvm.trap()
            unreachable

L12:                                              ; preds = %top
; ││││││││││ @ reduce.jl:429 within `_mapreduce`
; ││││││││││┌ @ essentials.jl:13 within `getindex`
             %11 = bitcast {}* %1 to <2 x double>**
             %12 = load <2 x double>*, <2 x double>** %11, align 8
             %13 = load <2 x double>, <2 x double>* %12, align 1
             br label %L46

L14:                                              ; preds = %top
; ││││││││││└
; ││││││││││ @ reduce.jl:431 within `_mapreduce`
; ││││││││││┌ @ int.jl:83 within `<`
             %14 = icmp ugt i64 %6, 15
; ││││││││││└
            br i1 %14, label %L42, label %L16

L16:                                              ; preds = %L14
; ││││││││││ @ reduce.jl:433 within `_mapreduce`
; ││││││││││┌ @ essentials.jl:13 within `getindex`
             %15 = bitcast {}* %1 to [2 x double]**
             %16 = load [2 x double]*, [2 x double]** %15, align 8
             %17 = bitcast [2 x double]* %16 to <2 x double>*
             %18 = load <2 x double>, <2 x double>* %17, align 1
; ││││││││││└
; ││││││││││ @ reduce.jl:434 within `_mapreduce`
; ││││││││││┌ @ essentials.jl:13 within `getindex`
             %.sroa.028.0..sroa_idx = getelementptr inbounds [2 x double], [2 x double]* %16, i64 1, i64 0
             %19 = bitcast double* %.sroa.028.0..sroa_idx to <2 x double>*
             %20 = load <2 x double>, <2 x double>* %19, align 1
; ││││││││││└
; ││││││││││ @ reduce.jl:435 within `_mapreduce`
; ││││││││││┌ @ reduce.jl:24 within `add_sum`
; │││││││││││┌ @ In[5]:2 within `+` @ float.jl:408
              %21 = fadd <2 x double> %18, %20
; ││││││││││└└
; ││││││││││ @ reduce.jl:436 within `_mapreduce`
; ││││││││││┌ @ int.jl:83 within `<`
             %.not6482 = icmp ugt i64 %6, 2
; ││││││││││└
            br i1 %.not6482, label %L33, label %L46

L33:                                              ; preds = %L33, %L16
            %value_phi285 = phi i64 [ %23, %L33 ], 




[ 2, %L16 ]
            %22 = phi <2 x double> [ %26, %L33 ], [ %21, %L16 ]
; ││││││││││ @ reduce.jl:437 within `_mapreduce`
; ││││││││││┌ @ int.jl:87 within `+`
             %23 = add nuw nsw i64 %value_phi285, 1
; ││││││││││└
; ││││││││││┌ @ essentials.jl:13 within `getindex`
             %.sroa.0.0..sroa_idx = getelementptr inbounds [2 x double], [2 x double]* %16, i64 %value_phi285, i64 0
             %24 = bitcast double* %.sroa.0.0..sroa_idx to <2 x double>*
             %25 = load <2 x double>, <2 x double>* %24, align 1
; ││││││││││└
; ││││││││││ @ reduce.jl:438 within `_mapreduce`
; ││││││││││┌ @ reduce.jl:24 within `add_sum`
; │││││││││││┌ @ In[5]:2 within `+` @ float.jl:408
              %26 = fadd <2 x double> %22, %25
; ││││││││││└└
; ││││││││││ @ reduce.jl:436 within `_mapreduce`
; ││││││││││┌ @ int.jl:83 within `<`
             %exitcond.not = icmp eq i64 %23, %6
; ││││││││││└
            br i1 %exitcond.not, label %L46, label %L33

L42:                                              ; preds = %L14
; ││││││││││ @ reduce.jl:442 within `_mapreduce`
; ││││││││││┌ @ reduce.jl:272 within `mapreduce_impl`
             call void @j_mapreduce_impl_1308([2 x double]* noalias nocapture noundef nonnull sret([2 x double]) %tmpcast, {}* nonnull %1, i64 signext 1, i64 signext %6, i64 signext 1024) #0
; └└└└└└└└└└└
  %27 = load <2 x double>, <2 x double>* %3, align 16
; ┌ @ essentials.jl:10 within `length`
   %.pre = load i64, i64* %5, align 8
   br label %L46

L46:                                              ; preds = %L42, %L33, %L16, %L12
   %28 = phi i64 [ %.pre, %L42 ], [ 1, %L12 ], [ %6, %L16 ], [ %6, %L33 ]
   %29 = phi <2 x double> [ %27, %L42 ], [ %13, %L12 ], [ %21, %L16 ], [ %26, %L33 ]
; └
; ┌ @ In[5]:3 within `/` @ promotion.jl:413
; │┌ @ promotion.jl:381 within `promote`
; ││┌ @ promotion.jl:358 within `_promote`
; │││┌ @ number.jl:7 within `convert`
; ││││┌ @ float.jl:159 within `Float64`
       %30 = sitofp i64 %28 to double
; │└└└└
; │ @ In[5]:3 within `/` @ promotion.jl:413 @ float.jl:411
   %31 = insertelement <2 x double> poison, double %30, i64 0
   %32 = shufflevector <2 x double> %31, <2 x double> poison, <2 x i32> zeroinitializer
   %33 = fdiv <2 x double> %29, %32
; └
  %34 = bitcast [2 x double]* %0 to <2 x double>*
  store <2 x double> %33, <2 x double>* %34, align 8
  ret void
}





What this is doing is creating small little vectors and then parallelizing the operations of those vectors by calling specific vector-parallel instructions. Keep this in mind.



6.2.3 Explicit SIMD

The following was all a form of loop-level parallelism known as loop vectorization. It’s simply easier for compilers to reason at the array level, prove iterates are independent, and automatically generate SIMD code from that. This is not necessary, and compilers can produce SIMD code from non-looping code through a process known as SLP supervectorization, but the results are far from optimal and the compiler requires a lot of time to do this calculation, meaning that it’s usually not a pass used by default.

If you want to pack the vectors yourself, then primitives for doing so from within Julia are available in SIMD.jl. This is for “real” performance warriors. This looks like for example:


using SIMD
v = Vec{4,Float64}((1,2,3,4))
@show v+v # basic arithmetic is supported
@show sum(v) # basic reductions are supported



v + v = <4 x Float64>[2.0, 4.0, 6.0, 8.0]
sum(v) = 10.0




10.0





Using this you can pull apart code and force the usage of SIMD vectors. One library which makes great use of this is LoopVectorization.jl. However, one word of “caution”:

Most performance optimization is not trying to do something really good for performance. Most performance optimization is trying to not do something that is actively bad for performance.



6.2.4 Summary of SIMD


	Communication in SIMD is due to locality: if things are local the processor can automatically setup the operations.

	There’s no real worry about “getting it wrong”: you cannot overwrite pieces from different parts of the arithmetic unit, and if SIMD is unsafe then it just won’t auto-vectorize.

	Suitable for operations measured in ns.






6.3 Next Level Up: Multithreading

Last time we briefly went over multithreading and described how every process has multiple threads which share a single heap, and when multiple threads are executed simultaneously we have multithreaded parallelism. Note that you can have multiple threads which aren’t executed simultaneously, like in the case of I/O operations, and this is an example of concurrency without parallelism and is commonly referred to as green threads.



Last time we described a simple multithreaded program and noticed that multithreading has an overhead cost of around 50ns-100ns. This is due to the construction of the new stack (among other things) each time a new computational thread is spun up. This means that, unlike SIMD, some thought needs to be put in as to when to perform multithreading: it’s not always a good idea. It needs to be high enough on the cost for this to be counter-balanced.

One abstraction that was glossed over was the memory access style. Before, we were considering a single heap, or an UMA style:



However, this is the case for all shared memory devices. For example, compute nodes on the HPC tend to be “dual Xeon” or “quad Xeon”, where each Xeon processor is itself a multicore processor. But each processor on its own accesses its own local caches, and thus one has to be aware that this is setup in a NUMA (non-uniform memory access) manner:



where there is a cache that is closer to the processor and a cache that is further away. Care should be taken in this to localize the computation per thread, otherwise a cost associated with the memory sharing will be hit (but all sharing will still be automatic).

In this sense, interthread communication is naturally done through the heap: if you want other threads to be able to touch a value, then you can simply place it on the heap and then it’ll be available. We saw this last time by how overlapping computations can re-use the same heap-based caches, meaning that care needs to be taken with how one writes into a dynamically-allocated array.

A simple example that demonstrates this is. First, let’s make sure we have multithreading enabled:


using Base.Threads
Threads.nthreads() # should not be 1



1






using BenchmarkTools
acc = 0
@threads for i in 1:10_000
    global acc
    acc += 1
end
acc



10000





The reason for this behavior is that there is a difference between the reading and the writing step to an array. Here, values are being read while other threads are writing, meaning that they see a lower value than when they are attempting to write into it. The result is that the total summation is lower than the true value because of this clashing. We can prevent this by only allowing one thread to utilize the heap-allocated variable at a time. One abstraction for doing this is atomics:


acc = Atomic{Int64}(0)
@threads for i in 1:10_000
    atomic_add!(acc, 1)
end
acc



Atomic{Int64}(10000)





When an atomic add is being done, all other threads wishing to do the same computation are blocked. This of course can have a massive effect on performance since atomic computations are not parallel.

Julia also exposes a lower level of heap control in threading using locks


const acc_lock = Ref{Int64}(0)
const splock = SpinLock()
function f1()
    @threads for i in 1:10_000
        lock(splock)
        acc_lock[] += 1
        unlock(splock)
    end
end
const rsplock = ReentrantLock()
function f2()
    @threads for i in 1:10_000
        lock(rsplock)
        acc_lock[] += 1
        unlock(rsplock)
    end
end
acc2 = Atomic{Int64}(0)
function g()
  @threads for i in 1:10_000
      atomic_add!(acc2, 1)
  end
end
const acc_s = Ref{Int64}(0)
function h()
  global acc_s
  for i in 1:10_000
      acc_s[] += 1
  end
end
@btime f1()



  142.371 μs (7 allocations: 640 bytes)





SpinLock is non-reentrant, i.e. it will block itself if a thread that calls a lock does another lock. Therefore it has to be used with caution (every lock goes with one unlock), but it’s fast. ReentrantLock alleviates those concerns, but trades off a bit of performance:


@btime f2()



  147.166 μs (7 allocations: 640 bytes)





But if you can use atomics, they will be faster:


@btime g()



  44.416 μs (7 allocations: 640 bytes)





and if your computation is actually serial, then use serial code:


@btime h()



  2.222 ns (0 allocations: 0 bytes)





Why is this so fast? Check the code:


@code_llvm h()



;  @ In[10]:25 within `h`
define void @julia_h_1791() #0 {
top:
  %.promoted = load i64, i64* inttoptr (i64 140528497095776 to i64*), align 32
;  @ In[10]:27 within `h`
  %0 = add i64 %.promoted, 10000
;  @ In[10]:28 within `h`
; ┌ @ Base.jl within `setproperty!`
   store i64 %0, i64* inttoptr (i64 140528497095776 to i64*), align 32
; └
;  @ In[10]:29 within `h`
  ret void
}





It just knows to add 10000. So to get a proper timing let’s make the size mutable:


const len = Ref{Int}(10_000)
function h2()
  global acc_s
  global len
  for i in 1:len[]
      acc_s[] += 1
  end
end
@btime h2()



  2.224 ns (0 allocations: 0 bytes)






@code_llvm h2()



;  @ In[15]:2 within `h2`
define void @julia_h2_1798() #0 {
top:
;  @ In[15]:5 within `h2`
; ┌ @ refvalue.jl:56 within `getindex`
; │┌ @ Base.jl:37 within `getproperty`
    %0 = load i64, i64* inttoptr (i64 140528498573584 to i64*), align 16
; └└
; ┌ @ range.jl:5 within `Colon`
; │┌ @ range.jl:397 within `UnitRange`
; ││┌ @ range.jl:404 within `unitrange_last`
     %.inv = icmp sgt i64 %0, 0
; └└└
  br i1 %.inv, label %L18.preheader, label %L34

L18.preheader:                                    ; preds = %top
  %.promoted = load i64, i64* inttoptr (i64 140528497095776 to i64*), align 32
;  @ In[15]:7 within `h2`
  %1 = add i64 %.promoted, %0
;  @ In[15]:6 within `h2`
; ┌ @ Base.jl within `setproperty!`
   store i64 %1, i64* inttoptr (i64 140528497095776 to i64*), align 32
; └
;  @ In[15]:7 within `h2`
  br label %L34

L34:                                              ; preds = %L18.preheader, %top
  ret void
}





It’s still optimizing it!


non_const_len = 10000
function h3()
  global acc_s
  global non_const_len
  len2::Int = non_const_len
  for i in 1:len2
      acc_s[] += 1
  end
end
@btime h3()



  99.955 ns (0 allocations: 0 bytes)





Note that what is shown here is a type-declaration. a::T = ... forces a to be of type T throughout the whole function. By giving the compiler this information, I am able to use the non-constant global in a type-stable manner.

One last thing to note about multithreaded computations, and parallel computations, is that one cannot assume that the parallelized computation is computed in any given order. For example, the following will has a quasi-random ordering:


const a2 = zeros(nthreads()*10)
const acc_lock2 = Ref{Int64}(0)
const splock2 = SpinLock()
function f_order()
    @threads for i in 1:length(a2)
        lock(splock2)
        acc_lock2[] += 1
        a2[i] = acc_lock2[]
        unlock(splock2)
    end
end
f_order()
a2



10-element Vector{Float64}:
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0





Note that here we can see that Julia 1.5 is dividing up the work into groups of 10 for each thread, and then one thread dominates the computation at a time, but which thread dominates is random.


6.3.1 The Dining Philosophers Problem

A classic tale in parallel computing is the dining philosophers problem. In this case, there are N philosophers at a table who all want to eat at the same time, following all of the same rules. Each philosopher must alternatively think and then eat. They need both their left and right fork to start eating, but cannot start eating until they have both forks. The problem is how to setup a concurrent algorithm that will not cause any philosophers to starve.

The difficulty is a situation known as deadlock. For example, if each philosopher was told to grab the right fork when it’s available, and then the left fork, and put down the fork after eating, then they will all grab the right fork and none will ever eat because they will all be waiting on the left fork. This is analogous to two blocked computations which are waiting on the other to finish. Thus, when using blocking structures, one needs to be careful about deadlock!



6.3.2 Two Programming Models: Loop-Level Parallelism and Task-Based Parallelism

As described in the previous lecture, one can also use Threads.@spawn to do multithreading in Julia v1.3+. The same factors all applay: how to do locks and Mutex etc. This is a case of a parallelism construct having two alternative programming models. Threads.@spawn represents task-based parallelism, while Threads.@threads represents Loop-Level Parallelism or a parallel iterator model. Loop-based parallelization models are very high level and, assuming every iteration is independent, almost requires no code change. Task-based parallelism is a more expressive parallelism model, but usually requires modifying the code to be explicitly written as a set of parallelizable tasks. Note that in the case of Julia, Threads.@threads is implemented using Threads.@spawn’s model.



6.3.3 Summary of Multithreading


	Communication in multithreading is done on the heap. Locks and atomics allow for a form of safe message passing.

	50ns-100ns of overhead. Suitable for 1μs calculations.

	Be careful of ordering and heap-allocated values.






6.4 GPU Computing

GPUs are not fast. In fact, the problem with GPUs is that each processor is slow. However, GPUs have a lot of cores… like thousands.



An RTX2080, a standard “gaming” GPU (not even the ones in the cluster), has 2944 cores. However, not only are GPUs slow, but they also need to be programmed in a style that is SPMD, which standard for Single Program Multiple Data. This means that every single thread must be running the same program but on different pieces of data. Exactly the same program. If you have


if a > 1
  # Do something
else
  # Do something else
end




where some of the data goes on one branch and other data goes on the other branch, every single thread will run both branches (performing “fake” computations while on the other branch). This means that GPU tasks should be “very parallel” with as few conditionals as possible.


6.4.1 GPU Memory

GPUs themselves are shared memory devices, meaning they have a heap that is shared amongst all threads. However, GPUs are heavily in the NUMA camp, where different blocks of the GPU have much faster access to certain parts of the memory. Additionally, this heap is disconnected from the standard processor, so data must be passed to the GPU and data must be returned.

GPU memory size is relatively small compared to CPUs. Example: the RTX2080Ti has 8GB of RAM. Thus one needs to be doing computations that are memory compact (such as matrix multiplications, which are O(n^3) making the computation time scale quicker than the memory cost).



6.4.2 Note on GPU Hardware

Standard GPU hardware “for gaming”, like RTX2070, is just as fast as higher end GPU hardware for Float32. Higher end hardware, like the Tesla, add more memory, memory safety, and Float64 support. However, these require being in a server since they have alternative cooling strategies, making them a higher end product.



6.4.3 SPMD Kernel Generation GPU Computing Models

The core programming models for GPU computing are SPMD kernel compilers, of which the most well-known is CUDA. CUDA is a C++-like programming language which compiles to .ptx kernels, and GPU execution on NVIDIA GPUs is done by “all steams” of a GPU doing concurrent execution of the kernel (generally, without going into more details, you can of “all streams” as just meaning “all cores”. More detailed views of GPU execution will come later).

.ptx CUDA kernels can be compiled from LLVM IR, and thus since Julia is a programming language which emits LLVM IR for all of its operations, native Julia programs are compatible with compilation to CUDA. The helper functions to enable this separate compilation path is CUDA.jl. Let’s take a look at a basic CUDA.jl kernel generating example:


using CUDA

N = 2^20
x_d = CUDA.fill(1.0f0, N)  # a vector stored on the GPU filled with 1.0 (Float32)
y_d = CUDA.fill(2.0f0, N)  # a vector stored on the GPU filled with 2.0

function gpu_add2!(y, x)
    index = threadIdx().x    # this example only requires linear indexing, so just use `x`
    stride = blockDim().x
    for i = index:stride:length(y)
        @inbounds y[i] += x[i]
    end
    return nothing
end

fill!(y_d, 2)
@cuda threads=256 gpu_add2!(y_d, x_d)
all(Array(y_d) .== 3.0f0)



true





The key to understanding the SPMD kernel approach is the index = threadIdx().x and stride = blockDim().x portions.



The way kernels are expected to run in parallel is that they are given a specific block of the computation and are expected to write a kernel which only on that small block of the input. This kernel is then called on every separate thread on the GPU, making each CUDA core simultaneously compute each block. Thus as a user in such a SPMD programming model, you never specify the computation globally but instead simply specify how chunks should behave, giving the compiler the leeway to determine the optimal global execution.



6.4.4 Array-Based GPU Computing Models

The simplest version of GPU computing is the array-based programming model.


A = rand(100,100); B = rand(100,100)
using CUDA
# Pass to the GPU
cuA = cu(A); cuB = cu(B)
cuC = cuA*cuB
# Pass to the CPU
C = Array(cuC)



100×100 Matrix{Float32}:
 25.2174  25.2068  30.643   29.6637  …  27.9611  24.9421  26.9506  29.1345
 26.0279  25.1328  27.9006  26.8798     27.6247  24.7464  25.629   27.4745
 27.9515  28.3498  31.3652  28.5728     29.952   25.7026  26.4314  30.0838
 24.6691  22.7898  27.676   24.8572     25.1785  23.0514  25.0283  25.686
 21.9628  20.7699  24.3576  25.6201     25.6977  22.0507  21.0805  23.5856
 25.4982  24.7494  29.2462  28.1341  …  27.6873  26.4044  25.3061  28.1602
 25.3113  21.7725  29.3197  26.4905     25.6295  23.9554  24.7066  27.5221
 23.3383  23.6574  27.3592  25.9897     26.377   23.3965  25.0004  26.3139
 24.4612  22.1654  25.7078  25.6877     25.3629  22.5118  25.8456  25.1166
 25.7816  26.5031  27.4216  26.5185     25.243   24.6056  24.2092  27.2341
 23.3396  22.0828  26.956   24.1732  …  23.8081  21.7862  24.0191  26.3785
 25.5222  24.8704  29.6185  26.0281     25.7524  24.7554  24.374   29.0037
 22.8893  22.2932  26.5636  25.4565     24.9314  23.0376  23.3338  25.4142
  ⋮                                  ⋱                             
 24.621   23.7586  27.9225  26.2413     25.6664  24.3431  24.6897  26.6826
 24.7751  25.3204  27.8922  29.0488     27.8255  24.6973  25.7094  28.6027
 22.1071  22.2934  27.2608  23.9704  …  25.9147  23.4514  21.3411  25.9921
 25.9989  23.7282  28.3869  26.7854     26.6361  23.4703  24.4725  26.3765
 26.0071  22.6166  27.2056  25.6739     24.3062  23.1137  23.8966  27.0113
 26.0588  22.529   27.3364  26.2684     25.3968  22.7364  23.8687  25.5091
 24.2751  23.8571  27.7896  25.9088     25.0802  23.5407  23.8094  26.4296
 25.1115  24.9171  31.255   25.5935  …  24.8314  24.4798  25.5283  27.6538
 21.0014  21.1732  23.0189  22.7808     21.5617  22.4791  21.4399  21.8663
 27.1477  25.0905  32.1842  27.3799     27.3333  26.0638  27.0694  31.1464
 29.4408  27.7364  33.5282  30.3124     29.9154  27.5964  29.548   31.2372
 27.3644  25.9621  30.2384  28.1862     28.5787  27.4126  26.2471  28.2763





Let’s see the transfer times:


@btime cu(A)



  8.282 μs (8 allocations: 39.30 KiB)




100×100 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
 0.859609   0.612916   0.875837   …  0.531083  0.819359     0.863836
 0.0274435  0.286557   0.833856      0.431094  0.848834     0.509206
 0.880454   0.815257   0.311205      0.620273  0.910661     0.684508
 0.829527   0.795977   0.0583801     0.150022  0.878572     0.207478
 0.397744   0.0469633  0.280327      0.506843  0.472946     0.513411
 0.60672    0.859318   0.95673    …  0.52528   0.193262     0.649544
 0.453395   0.708531   0.0710387     0.145968  0.714209     0.860993
 0.377858   0.398407   0.686545      0.485881  0.935965     0.741263
 0.795961   0.615847   0.482252      0.879083  0.000640309  0.120267
 0.761624   0.535908   0.555439      0.470877  0.724565     0.378356
 0.367695   0.320435   0.992619   …  0.031586  0.754172     0.883693
 0.0179017  0.062854   0.565775      0.956572  0.301312     0.614447
 0.407163   0.257034   0.663339      0.434293  0.961015     0.975204
 ⋮                                ⋱                         
 0.686642   0.276353   0.34161       0.786918  0.654377     0.0744828
 0.0548055  0.1073     0.923222      0.435694  0.973085     0.757522
 0.349566   0.370051   0.604659   …  0.449472  0.312748     0.889252
 0.570385   0.916577   0.0621183     0.485823  0.977169     0.746722
 0.124885   0.623896   0.924477      0.301229  0.246341     0.709085
 0.630476   0.674576   0.680024      0.099295  0.369087     0.736965
 0.278139   0.635155   0.794602      0.23157   0.357463     0.925802
 0.932102   0.725178   0.45791    …  0.401816  0.92074      0.851498
 0.905027   0.758188   0.93854       0.754275  0.943657     0.366525
 0.546772   0.396596   0.67727       0.264584  0.963298     0.575101
 0.600909   0.751196   0.530351      0.678082  0.810748     0.430498
 0.0158595  0.370706   0.750514      0.341485  0.135057     0.700306






@btime Array(cuC)



  12.492 μs (3 allocations: 39.12 KiB)




100×100 Matrix{Float32}:
 25.2174  25.2068  30.643   29.6637  …  27.9611  24.9421  26.9506  29.1345
 26.0279  25.1328  27.9006  26.8798     27.6247  24.7464  25.629   27.4745
 27.9515  28.3498  31.3652  28.5728     29.952   25.7026  26.4314  30.0838
 24.6691  22.7898  27.676   24.8572     25.1785  23.0514  25.0283  25.686
 21.9628  20.7699  24.3576  25.6201     25.6977  22.0507  21.0805  23.5856
 25.4982  24.7494  29.2462  28.1341  …  27.6873  26.4044  25.3061  28.1602
 25.3113  21.7725  29.3197  26.4905     25.6295  23.9554  24.7066  27.5221
 23.3383  23.6574  27.3592  25.9897     26.377   23.3965  25.0004  26.3139
 24.4612  22.1654  25.7078  25.6877     25.3629  22.5118  25.8456  25.1166
 25.7816  26.5031  27.4216  26.5185     25.243   24.6056  24.2092  27.2341
 23.3396  22.0828  26.956   24.1732  …  23.8081  21.7862  24.0191  26.3785
 25.5222  24.8704  29.6185  26.0281     25.7524  24.7554  24.374   29.0037
 22.8893  22.2932  26.5636  25.4565     24.9314  23.0376  23.3338  25.4142
  ⋮                                  ⋱                             
 24.621   23.7586  27.9225  26.2413     25.6664  24.3431  24.6897  26.6826
 24.7751  25.3204  27.8922  29.0488     27.8255  24.6973  25.7094  28.6027
 22.1071  22.2934  27.2608  23.9704  …  25.9147  23.4514  21.3411  25.9921
 25.9989  23.7282  28.3869  26.7854     26.6361  23.4703  24.4725  26.3765
 26.0071  22.6166  27.2056  25.6739     24.3062  23.1137  23.8966  27.0113
 26.0588  22.529   27.3364  26.2684     25.3968  22.7364  23.8687  25.5091
 24.2751  23.8571  27.7896  25.9088     25.0802  23.5407  23.8094  26.4296
 25.1115  24.9171  31.255   25.5935  …  24.8314  24.4798  25.5283  27.6538
 21.0014  21.1732  23.0189  22.7808     21.5617  22.4791  21.4399  21.8663
 27.1477  25.0905  32.1842  27.3799     27.3333  26.0638  27.0694  31.1464
 29.4408  27.7364  33.5282  30.3124     29.9154  27.5964  29.548   31.2372
 27.3644  25.9621  30.2384  28.1862     28.5787  27.4126  26.2471  28.2763





The cost transferring is about 20μs-50μs in each direction, meaning that one needs to be doing operations that cost at least 200μs for GPUs to break even. A good rule of thumb is that GPU computations should take at least a millisecond, or GPU memory should be re-used.



6.4.5 Summary of GPUs


	GPUs cores are slow

	GPUs are SPMD

	GPUs are generally used for linear algebra

	Suitable for SPMD 1ms computations






6.5 Xeon Phi Accelerators and OpenCL

Other architectures exist to keep in mind. Xeon Phis are a now-defunct accelerator that used X86 (standard processors) as the base, using hundreds of them. For example, the Knights Landing series had 256 core accelerator cards. These were all clocked down, meaning they were still slower than a standard CPU, but there were less restrictions on SPMD (though SPMD-like computations were still preferred in order to heavily make use of SIMD). However, because machine learning essentially only needs linear algebra, and linear algebra is faster when restricting to SPMD-architectures, this failed. These devices can still be found on many high end clusters.

One alternative to CUDA is OpenCL which supports alternative architectures such as the Xeon Phi at the same time that it supports GPUs. However, one of the issues with OpenCL is that its BLAS implementation currently does not match the speed of CuBLAS, which makes NVIDIA-specific libraries still the king of machine learning and most scientific computing.



6.6 TPU Computing

TPUs are tensor processing units, which is Google’s newest accelerator technology. They are essentially just “tensor operation compilers”, which in computer science speak is simply higher dimensional linear algebra. To do this, they internally utilize a BFloat16 type, which is a 16-bit floating point number with the same exponent size as a Float32 with an 8-bit significant. This means that computations are highly prone to catastrophic cancellation. This computational device only works because BFloat16 has primitive operations for FMA which allows 32-bit-like accuracy of multiply-add operations, and thus computations which are only dot products (linear algebra) end up okay. Thus this is simply a GPU-like device which has gone further to completely specialize in linear algebra.



6.7 Multiprocessing (Distributed Computing)

While multithreading computes with multiple threads, multiprocessing computes with multiple independent processes. Note that processes do not share any memory, not heap or data, and thus this mode of computing also allows for distributed computations, which is the case where processes may be on separate computing hardware. However, even if they are on the same hardware, the lack of a shared address space means that multiprocessing has to do message passing, i.e. send data from one process to the other.


6.7.1 Distributed Tasks with Explicit Memory Handling: The Master-Worker Model

Given the amount of control over data handling, there are many different models for distributed computing. The simplest, the one that Julia’s Distributed Standard Library defaults to, is the master-worker model. The master-worker model has one process, deemed the master, which controls the worker processes.

Here we can start by adding some new worker processes:


using Distributed
addprocs(4)




This adds 4 worker processes for the master to control. The simplest computations are those where the master process gives the worker process a job which returns the value afterwards. For example, a pmap operation or @distributed loop gives the worker a function to execute, along with the data, and the worker then computes and returns the result.

At a lower level, this is done by Distributed.@spawning jobs, or using a remotecall and fetching the result. ParallelDataTransfer.jl gives an extended set of primitive message passing operations. For example, we can explicitly tell it to compute a function f on the remote process like:


@everywhere f(x) = x.^2 # Define this function on all processes
t = remotecall(f,2,randn(10))




remotecall is a non-blocking operation that returns a Future. To access the data, one should use the blocking operation fetch to receive the data:


xsq = fetch(t)






6.7.2 Distributed Tasks with Implicit Memory Handling: Distributed Task-Based Parallelism

Another popular programming model for distributed computation is task-based parallelism but where all of the memory handling is implicit. Since, unlike the shared memory parallelism case, data transfers are required for given processes to share heap allocated values, distributed task-based parallelism libraries tend to want a global view of the whole computation in order to build a sophisticated schedule that includes where certain data lives and when transfers will occur. Because of this, distributed task-based parallelism libraries tend to want the entire computational graph of the computation, to be able to restructure the graph as necessary with their own data transfer portions spliced into the compute. Examples of this kind of framework are:


	Tensorflow

	dask (“distributed tasks”)

	Dagger.jl



Using these kinds of libraries requires building a directed acyclic graph (DAG). For example, the following showcases how to use Dagger.jl to represent a bunch of summations:


using Dagger

add1(value) = value + 1
add2(value) = value + 2
combine(a...) = sum(a)

p = delayed(add1)(4)
q = delayed(add2)(p)
r = delayed(add1)(3)
s = delayed(combine)(p, q, r)

@assert collect(s) == 16




Once the global computation is specified, commands like collect are used to instantiate the graph on given input data, which then run the computation in a (potentially) distributed manner, depending on internal scheduler heuristics.



6.7.3 Distributed Array-Based Parallelism: SharedArrays, Elemental, and DArrays

Because array operations are a standard way to compute in scientific computing, there are higher level primitives to help with message passing. A SharedArray is an array which acts like a shared memory device. This means that every change to a SharedArray causes message passing to keep them in sync, and thus this should be used with a performance caution. DistributedArrays.jl is a parallel array type which has local blocks and can be used for writing higher level abstractions with explicit message passing. Because it is currently missing high-level parallel linear algebra, currently the recommended tool for distributed linear algebra is Elemental.jl.



6.7.4 MapReduce, Hadoop, and Spark: The Map-Reduce Model

Many data-parallel operations work by mapping a function f onto each piece of data and then reducing it. For example, the sum of squares maps the function x -> x^2 onto each value, and then these values are reduced by performing a summation. MapReduce was a Google framework in the 2000’s built around this as the parallel computing concept, and current data-handling frameworks, like Hadoop and Spark, continue this as the core distributed programming model.

In Julia, there exists the mapreduce function for performing serial mapreduce operations. It also work on GPUs. However, it does not auto-distribute. For distributed map-reduce programming, the @distributed for-loop macro can be used. For example, sum of squares of random numbers is:


@distributed (+) for i in 1:1000
  rand()^2
end




One can see that computing summary statistics is easily done in this framework which is why it was majorly adopted among “big data” communities.

@distributed uses a static scheduler. The dynamic scheduling equivalent is pmap:


pmap(i->rand()^2,1:100)




which will dynamically allocate jobs to processes as they declare they have finished jobs. This thus has the same performance difference behavior as Threads.@threads vs Threads.@spawn.



6.7.5 MPI: The Distributed SPMD Model

The main way to do high-performance multiprocessing is MPI, which is an old distributed computing interface from the C/Fortran days. Julia has access to the MPI programming model through MPI.jl. The programming model for MPI is that every computer is running the same program, and synchronization is performed by blocking communication. For example, let’s look at the following:


using MPI
MPI.Init()

comm = MPI.COMM_WORLD
rank = MPI.Comm_rank(comm)
size = MPI.Comm_size(comm)

dst = mod(rank+1, size)
src = mod(rank-1, size)

N = 4

send_mesg = Array{Float64}(undef, N)
recv_mesg = Array{Float64}(undef, N)

fill!(send_mesg, Float64(rank))

rreq = MPI.Irecv!(recv_mesg, src,  src+32, comm)

print("$rank: Sending   $rank -> $dst = $send_mesg\n")
sreq = MPI.Isend(send_mesg, dst, rank+32, comm)

stats = MPI.Waitall!([rreq, sreq])

print("$rank: Received $src -> $rank = $recv_mesg\n")

MPI.Barrier(comm)




#| eval: false
> mpiexecjl -n 3 julia examples/04-sendrecv.jl
1: Sending   1 -> 2 = [1.0, 1.0, 1.0, 1.0]
0: Sending   0 -> 1 = [0.0, 0.0, 0.0, 0.0]
1: Received 0 -> 1 = [0.0, 0.0, 0.0, 0.0]
2: Sending   2 -> 0 = [2.0, 2.0, 2.0, 2.0]
0: Received 2 -> 0 = [2.0, 2.0, 2.0, 2.0]
2: Received 1 -> 2 = [1.0, 1.0, 1.0, 1.0]

Let’s investigate this a little bit. Think about having two computers run this line-by-line side by side. They will both locally build arrays, and then call MPI.Irecv!, which is an asynchronous non-blocking call to listen for a message from a given rank (a rank is the ID for a given process). Then they call their sreq = MPI.Isend function, which is an asynchronous non-blocking call to send a message send_mesg to the chosen rank. When the expected message is found, MPI.Irecv! will then run on its green thread and finish, updating the recv_mesg with the information from the message. However, in order to make sure all of the messages are received, we have added in a blocking operation MPI.Waitall!([rreq, sreq]), which will block all further execution on the given rank until both its rreq and sreq tasks are completed. After that is done, each given rank will have its updated data, and the script will continue on all ranks.

This model is thus very asynchronous and allows for many different computers to run one highly parallelized program, managing the data transmissions in a sparse way without a single computer in charge of managing the whole computation. However, it can be prone to deadlock, since errors in the program may for example require rank 1 to receive a message from rank 2 before continuing the program, but rank 2 won’t continue to program until it receives a message from rank 1. For this reason, while MPI has been the most successful large-scale distributed computing model and almost all major high-performance computing (HPC) cluster competitions have been won by codes utilizing the MPI model, the MPI model is nowadays considered a last resort due to these safety issues.



6.7.6 Summary of Multiprocessing


	Cost is hardware dependent: only suitable for 1ms or higher depending on the connections through which the messages are being passed and the topology of the network.

	The Master-worker programming model is Julia’s Distributed model

	The Map-reduce programming model is a common data-handling model

	Array-based distributed computations are another abstraction, used in all forms of parallelism.

	MPI is a SPMD model of distributed computing, where each process is completely independent and one just controls the memory handling.






6.8 The Bait-and-switch: Parallelism is about Programming Models

While this looked like a lecture about parallel programming at the different levels and types of hardware, this wide overview showcases that the real underlying commonality within parallel program is in the parallel programming models, of which there are not too many. There are:


	Map-reduce parallelism models. pmap, MapReduce (Hadoop/Spark)

	Pros: Easy to use

	Cons: Requires that your program is specifically only mapping functions f and reducing them. That said, many data science operations like mean, variance, maximum, etc. can be represented as map-reduce calls, which lead to the popularity of these approaches for “big data” operations.




	Array-based parallelism models. SIMD (at the compiler level), CuArray, DistributedArray, PyTorch.torch, …

	Pros: Easy to use, can have very fast library implementations for specific functions

	Cons: Less control and restricted to specific functions implemented by the library. Parallelism matches the data structure, so it requires the user to be careful and know the best way to split the data.




	Loop-based parallelism models. Threads.@threads, @distributed, OpenMP, MATLAB’s parfor, Chapel’s iterator parallelism

	Pros: Easy to use, almost no code change can make existing loops parallelized

	Cons: Refined operations, like locking and sharing data, can be awkward to write. Less control over fine details like scheduling, meaning less opportunities to optimize.




	Task-based parallelism models with implicit distributed data handling. Threads.@spawn, Dagger.jl, TensorFlow, dask

	Pros: Relatively high level, low risk of errors since parallelism is mostly handled for the user. User simply describes which functions to call in what order.

	Cons: When used on distributed systems, implicit data handling is hard, meaning it’s generally not as efficient if you don’t optimize the code yourself or help the optimizer, and these require specific programming constructs for building the computational graph. Note this is only a downside for distributed data parallelism, whereas when applied to shared memory systems these aspects no longer require handling by the task scheduler.




	Task-based parallelism models with explicit data handling. Distributed.@spawn

	Pros: Allows for control over what compute hardware will have specific pieces of data and allows for transferring data manually.

	Cons: Requires transferring data manually. All computations are managed by a single process/computer/node and thus it can have some issues scaling to extreme (1000+ node) computing situations.




	SPMD kernel parallelism models. CUDA, MPI, KernelAbstractions.jl

	Pros: Reduces the problem for the user to only specify what happens in small chunks of the problem. Works on accelerator hardware like GPUs, TPUs, and beyond.

	Cons: Only works for computations that be represented block-wise, and relies on the compiler to generate good code.






In this sense, the different parallel programming “languages” and features are much more similar than they are all different, falling into similar categories.
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7 Ordinary Differential Equations, Applications and Discretizations


7.1 Youtube Video Link Part 1



7.2 Youtube Video Link Part 2

Now that we have a sense of parallelism, let’s return back to our thread on scientific machine learning to start constructing parallel algorithms for integration of scientific models. We previously introduced discrete dynamical systems and their asymptotic behavior. However, many physical systems are not discrete and are in fact continuous. In this discussion we will understand how to numerically compute ordinary differential equations by transforming them into discrete dynamical systems, and use this to come up with simulation techniques for physical systems.



7.3 What is an Ordinary Differential Equation?

An ordinary differential equation is an equation defined by a relationship on the derivative. In its general form we have that

u′=f(u,p,t)u' = f(u,p,t)

describes the evolution of some variable u(t)u(t) which we would like to solve for. In its simplest sense, the solution to the ordinary differential equation is just the integral, since by taking the integral of both sides and applying the Fundamental Theorem of Calculus we have that

u=∫t0tff(u,p,t)dtu = \int_{t_0}^{t_f} f(u,p,t)dt

The difficulty of this equation is that the variable u(t)u(t) is unknown and dependent on tt, meaning that the integral cannot readily be solved by simple calculus. In fact, in almost all cases there exists no analytical solution for uu which is readily available. However, we can understand the behavior by looking at some simple cases.



7.4 Solving Ordinary Differential Equations in Julia

To solve an ordinary differential equation in Julia, one can use the DifferentialEquations.jl package to define the differential equation you’d like to solve. Let’s say we want to solve the Lorenz equations:

dxdt=σ(y−x)dydt=x(ρ−z)−ydzdt=xy−βz
\begin{align}
\frac{dx}{dt} &= σ(y-x) \\
\frac{dy}{dt} &= x(ρ-z) - y \\
\frac{dz}{dt} &= xy - βz \\
\end{align}


which was the system used in our investigation of discrete dynamics. The first thing we need to do is give it this differential equation. We can either write it in an in-place form f(du,u,p,t) or an out-of-place form f(u,p,t). Let’s write it in the in-place form:


function lorenz(du,u,p,t)
 du[1] = p[1]*(u[2]-u[1])
 du[2] = u[1]*(p[2]-u[3]) - u[2]
 du[3] = u[1]*u[2] - p[3]*u[3]
end



lorenz (generic function with 1 method)





Question: How could I maybe speed this up a little?

Next we give an initial condition. Here, this is a vector of equations, so our initial condition has to be a vector. Let’s choose the following initial condition:


u0 = [1.0,0.0,0.0]



3-element Vector{Float64}:
 1.0
 0.0
 0.0





Notice that I made sure to use Float64 values in the initial condition. The Julia library’s functions are generic and internally use the corresponding types that you give it. Integer types do not bode well for continuous problems.

Next, we have to tell it the timespan to solve on. Here, let’s some from time 0 to 100. This means that we would use:


tspan = (0.0,100.0)



(0.0, 100.0)





Now we need to define our parameters. We will use the same ones as from our discrete dynamical system investigation.


p = (10.0,28.0,8/3)



(10.0, 28.0, 2.6666666666666665)





These describe an ODEProblem. Let’s bring in DifferentialEquations.jl and define the ODE:


using DifferentialEquations
prob = ODEProblem(lorenz,u0,tspan,p)




ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 100.0)
u0: 3-element Vector{Float64}:
 1.0
 0.0
 0.0







Now we can solve it by calling solve:


sol = solve(prob)



retcode: Success
Interpolation: specialized 4th order "free" interpolation, specialized 2nd order "free" stiffness-aware interpolation
t: 1263-element Vector{Float64}:
   0.0
   3.5678604836301404e-5
   0.0003924646531993154
   0.0032624077544510573
   0.009058075635317072
   0.01695646895607931
   0.02768995855685593
   0.04185635042021763
   0.06024041165841079
   0.08368541255159562
   0.11336499649094857
   0.1486218182609657
   0.18703978481550704
   ⋮
  99.05535949898116
  99.14118781914485
  99.22588252940076
  99.30760258626904
  99.39665422328268
  99.49536147459878
  99.58822928767293
  99.68983993598462
  99.77864535713971
  99.85744078539504
  99.93773320913628
 100.0
u: 1263-element Vector{Vector{Float64}}:
 [1.0, 0.0, 0.0]
 [0.9996434557625105, 0.0009988049817849058, 1.781434788799208e-8]
 [0.9961045497425811, 0.010965399721242457, 2.146955365838907e-6]
 [0.9693591634199452, 0.08977060667778931, 0.0001438018342266937]
 [0.9242043615038835, 0.24228912482984957, 0.0010461623302512404]
 [0.8800455868998046, 0.43873645009348244, 0.0034242593451028745]
 [0.8483309847495312, 0.6915629321083602, 0.008487624590227805]
 [0.8495036669651213, 1.0145426355349096, 0.01821208962127994]
 [0.9139069574560097, 1.4425599806525806, 0.03669382197085303]
 [1.088863826836895, 2.052326595543049, 0.0740257368585531]
 [1.4608627354936607, 3.0206721193016133, 0.16003937020467585]
 [2.162723488309695, 4.633363843843712, 0.37711740539408584]
 [3.3684644104189387, 7.26769410983553, 0.936355641713984]
 ⋮
 [12.265454131109882, 12.598146409807255, 31.546057337607913]
 [10.48677626670755, 6.494631680470132, 33.669742813875764]
 [6.893277189568002, 3.1027383340030155, 29.77818388970318]
 [4.669609096878053, 3.061564434452441, 25.1424735017959]
 [4.188801916573263, 4.617474401440693, 21.09864175382292]
 [5.559603854699961, 7.905631612648314, 18.79323210016923]
 [8.556629716266505, 12.533041060088328, 20.6623639692711]
 [12.280585075547771, 14.505154761545633, 29.332088452699942]
 [11.736883151600804, 8.279294641640229, 34.68007510231878]
 [8.10973327066804, 3.2495066495235854, 31.97052076740117]
 [4.958629886040755, 2.194919965065022, 26.948439650907677]
 [3.8020065515435855, 2.787021797920187, 23.420567509786622]





To see what the solution looks like, we can call plot:


using Plots
plot(sol)








We can also plot phase space diagrams by telling it which vars to compare on which axis. Let’s plot this in the (x,y,z) plane:


plot(sol,vars=(1,2,3))



┌ Warning: To maintain consistency with solution indexing, keyword argument vars will be removed in a future version. Please use keyword argument idxs instead.
│   caller = ip:0x0
└ @ Core :-1









Note that the sentinal to time is 0, so we can also do (t,y,z) with:


plot(sol,vars=(0,2,3))








The equation is continuous and therefore the solution is continuous. We can see this by checking how it is at any random time value:


sol(0.5)



3-element Vector{Float64}:
  6.503654868503323
 -8.508354689912013
 38.09199724760152





which gives the current evolution at that time point.



7.5 Differential Equations from Scientific Contexts


7.5.1 N-Body Problems and Astronomy

There are many different contexts in which differential equations show up. In fact, it’s not a stretch to say that the laws in all fields of science are encoded in differential equations. The starting point for physics is Newton’s laws of gravity, which define an N-body ordinary differential equation system by describing the force between two particles as:

F=Gm1m2r2F = G \frac{m_1m_2}{r^2}

where r2r^2 is the Euclidian distance between the two particles. From here, we use the fact that

F=maF = ma

to receive differential equations in terms of the accelerations of each particle. The differential equation is a system, where we know the change in position is due to the current velocity:

x′=vx' = v

and the change in velocity is the acceleration:

v′=F/m=Gmiri2v' = F/m = G \frac{m_i}{r_i^2}

where ii runs over the other particles. Thus we have a vector of position derivatives and a vector of velocity derivatives that evolve over time to give the evolving positions and velocity.

An example of this is the Pleiades problem, which is an approximation to a 7-star chaotic system. It can be written as:


using OrdinaryDiffEq

function pleiades(du,u,p,t)
  @inbounds begin
  x = view(u,1:7)   # x
  y = view(u,8:14)  # y
  v = view(u,15:21) # x′
  w = view(u,22:28) # y′
  du[1:7] .= v
  du[8:14].= w
  for i in 15:28
    du[i] = zero(u[1])
  end
  for i=1:7,j=1:7
    if i != j
      r = ((x[i]-x[j])^2 + (y[i] - y[j])^2)^(3/2)
      du[14+i] += j*(x[j] - x[i])/r
      du[21+i] += j*(y[j] - y[i])/r
    end
  end
  end
end
tspan = (0.0,3.0)
prob = ODEProblem(pleiades,[3.0,3.0,-1.0,-3.0,2.0,-2.0,2.0,3.0,-3.0,2.0,0,0,-4.0,4.0,0,0,0,0,0,1.75,-1.5,0,0,0,-1.25,1,0,0],tspan)




ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 3.0)
u0: 28-element Vector{Float64}:
  3.0
  3.0
 -1.0
 -3.0
  2.0
 -2.0
  2.0
  3.0
 -3.0
  2.0
  0.0
  0.0
 -4.0
  ⋮
  0.0
  0.0
  0.0
  1.75
 -1.5
  0.0
  0.0
  0.0
 -1.25
  1.0
  0.0
  0.0







where we assume mi=im_i = i. When we solve this equation we receive the following:


sol = solve(prob,Vern8(),abstol=1e-10,reltol=1e-10)
plot(sol)









tspan = (0.0,200.0)
prob = ODEProblem(pleiades,[3.0,3.0,-1.0,-3.0,2.0,-2.0,2.0,3.0,-3.0,2.0,0,0,-4.0,4.0,0,0,0,0,0,1.75,-1.5,0,0,0,-1.25,1,0,0],tspan)
sol = solve(prob,Vern8(),abstol=1e-10,reltol=1e-10)
plot(sol,vars=((1:7),(8:14)))










7.5.2 Population Ecology: Lotka-Volterra

Population ecology’s starting point is the Lotka-Volterra equations which describes the interactions between a predator and a prey. In this case, the prey grows at an exponential rate but has a term that reduces its population by being eaten by the predator. The predator’s growth is dependent on the available food (the amount of prey) and has a decay rate due to old age. This model is then written as follows:


function lotka(du,u,p,t)
  du[1] = p[1]*u[1] - p[2]*u[1]*u[2]
  du[2] = -p[3]*u[2] + p[4]*u[1]*u[2]
end

p = [1.5,1.0,3.0,1.0]
prob = ODEProblem(lotka,[1.0,1.0],(0.0,10.0),p)
sol = solve(prob)
plot(sol)










7.5.3 Biochemistry: Robertson Equations

Biochemical equations commonly display large separation of timescales which lead to a stiffness phenomena that will be investigated later. The classic “hard” equations for ODE integration thus tend to come from biology (not physics!) due to this property. One of the standard models is the Robertson model, which can be described as:


using Sundials, ParameterizedFunctions
function rober(du,u,p,t)
  y₁,y₂,y₃ = u
  k₁,k₂,k₃ = p
  du[1] = -k₁*y₁+k₃*y₂*y₃
  du[2] =  k₁*y₁-k₂*y₂^2-k₃*y₂*y₃
  du[3] =  k₂*y₂^2
end
prob = ODEProblem(rober,[1.0,0.0,0.0],(0.0,1e5),(0.04,3e7,1e4))
sol = solve(prob,Rosenbrock23())
plot(sol)









plot(sol, xscale=:log10, tspan=(1e-6, 1e5), layout=(3,1))










7.5.4 Chemical Physics: Pollution Models

Chemical reactions in physical models are also described as differential equation systems. The following is a classic model of dynamics between different species of pollutants:


k1=.35e0
k2=.266e2
k3=.123e5
k4=.86e-3
k5=.82e-3
k6=.15e5
k7=.13e-3
k8=.24e5
k9=.165e5
k10=.9e4
k11=.22e-1
k12=.12e5
k13=.188e1
k14=.163e5
k15=.48e7
k16=.35e-3
k17=.175e-1
k18=.1e9
k19=.444e12
k20=.124e4
k21=.21e1
k22=.578e1
k23=.474e-1
k24=.178e4
k25=.312e1
p = (k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20,k21,k22,k23,k24,k25)
function f(dy,y,p,t)
 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20,k21,k22,k23,k24,k25 = p
 r1  = k1 *y[1]
 r2  = k2 *y[2]*y[4]
 r3  = k3 *y[5]*y[2]
 r4  = k4 *y[7]
 r5  = k5 *y[7]
 r6  = k6 *y[7]*y[6]
 r7  = k7 *y[9]
 r8  = k8 *y[9]*y[6]
 r9  = k9 *y[11]*y[2]
 r10 = k10*y[11]*y[1]
 r11 = k11*y[13]
 r12 = k12*y[10]*y[2]
 r13 = k13*y[14]
 r14 = k14*y[1]*y[6]
 r15 = k15*y[3]
 r16 = k16*y[4]
 r17 = k17*y[4]
 r18 = k18*y[16]
 r19 = k19*y[16]
 r20 = k20*y[17]*y[6]
 r21 = k21*y[19]
 r22 = k22*y[19]
 r23 = k23*y[1]*y[4]
 r24 = k24*y[19]*y[1]
 r25 = k25*y[20]

 dy[1]  = -r1-r10-r14-r23-r24+
          r2+r3+r9+r11+r12+r22+r25
 dy[2]  = -r2-r3-r9-r12+r1+r21
 dy[3]  = -r15+r1+r17+r19+r22
 dy[4]  = -r2-r16-r17-r23+r15
 dy[5]  = -r3+r4+r4+r6+r7+r13+r20
 dy[6]  = -r6-r8-r14-r20+r3+r18+r18
 dy[7]  = -r4-r5-r6+r13
 dy[8]  = r4+r5+r6+r7
 dy[9]  = -r7-r8
 dy[10] = -r12+r7+r9
 dy[11] = -r9-r10+r8+r11
 dy[12] = r9
 dy[13] = -r11+r10
 dy[14] = -r13+r12
 dy[15] = r14
 dy[16] = -r18-r19+r16
 dy[17] = -r20
 dy[18] = r20
 dy[19] = -r21-r22-r24+r23+r25
 dy[20] = -r25+r24
end



f (generic function with 1 method)






u0 = zeros(20)
u0[2]  = 0.2
u0[4]  = 0.04
u0[7]  = 0.1
u0[8]  = 0.3
u0[9]  = 0.01
u0[17] = 0.007
prob = ODEProblem(f,u0,(0.0,60.0),p)
sol = solve(prob,Rodas5())



retcode: Success
Interpolation: specialized 4rd order "free" stiffness-aware interpolation
t: 29-element Vector{Float64}:
  0.0
  0.0013845590497824308
  0.003242540880561935
  0.007901605227525086
  0.016011572765091416
  0.02740615678429701
  0.044612092501151696
  0.07720629370280543
  0.11607398786651008
  0.1763063703057767
  0.2579025569276484
  0.3684040016675436
  0.4976731407000709
  ⋮
  1.6692678869290878
  2.1120042389942575
  2.7287854185402995
  3.676321507769747
  5.344945477147836
  7.985769209063678
 11.981251310096694
 17.452504634746386
 24.882247321193052
 34.66462280306778
 47.27763232418448
 60.0
u: 29-element Vector{Vector{Float64}}:
 [0.0, 0.2, 0.0, 0.04, 0.0, 0.0, 0.1, 0.3, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007, 0.0, 0.0, 0.0]
 [0.0002935083676916062, 0.19970649101355778, 1.693835912963263e-10, 0.03970673366392418, 1.1424841091201038e-7, 1.0937647553427759e-7, 0.09999966676440009, 0.3000003350396963, 0.00999998209858389, 5.6037724774041996e-9, 6.047938337401518e-9, 1.004757080331196e-8, 5.9812281205517996e-12, 6.239553394674922e-9, 2.3022538431539757e-10, 3.129330582279999e-17, 0.006999999417662247, 5.823377531818463e-10, 3.8240538930006997e-10, 6.930819262664895e-14]
 [0.0006836584262738185, 0.19931633629695783, 1.9606016564783855e-10, 0.03931745222652303, 2.0821314359971526e-7, 2.5242637698192594e-7, 0.09999884087661927, 0.30000116344748634, 0.009999897466494299, 2.060514512836631e-8, 1.6844788957556812e-8, 8.136618249763386e-8, 1.0724538885842355e-10, 6.486750944005252e-8, 3.1010416395449586e-9, 3.098650817258985e-17, 0.006999996444140231, 3.555859768109285e-9, 2.064386087388623e-9, 2.0476275988812504e-12]
 [0.0016428179821615391, 0.19835713123489693, 2.6245924414625437e-10, 0.0383623109751218, 3.515273109946351e-7, 4.664572523382881e-7, 0.09999544921365162, 0.3000045632051474, 0.00999947365101553, 4.4964384052575006e-8, 3.335028459989388e-8, 4.812858451973164e-7, 1.440960635479933e-9, 4.444464501496583e-7, 3.745751745418737e-8, 3.0233751050330334e-17, 0.006999981334742691, 1.8665257309560864e-8, 1.174674271331608e-8, 6.886039278040623e-11]
 [0.0032462849525836317, 0.19675344580878912, 3.7349154721240826e-10, 0.03676859821471883, 4.320335375819997e-7, 5.784969040588635e-7, 0.09998753646949957, 0.30001250073250896, 0.00999841279050207, 5.847792696989046e-8, 4.2283730165807424e-8, 1.5155870313913987e-6, 8.52498025471751e-9, 1.461534608031614e-6, 2.142214641931594e-7, 2.897772883427687e-17, 0.006999943344407836, 5.6655592163595973e-8, 4.4368496659438254e-8, 1.0618431054301687e-9]
 [0.005361393004057221, 0.19463777403944538, 5.199898853042826e-10, 0.03466792308144617, 4.301350110500244e-7, 5.629734298792613e-7, 0.09997580962893295, 0.30002429018799176, 0.00999682035482297, 5.777644541817105e-8, 4.151145797901329e-8, 3.075243316490961e-6, 2.7267223985258345e-8, 2.9888963034290736e-6, 6.762049531575719e-7, 2.732216410413453e-17, 0.006999886274019657, 1.1372598034289956e-7, 1.1359725262068193e-7, 7.94353386313709e-9]
 [0.008274964935351176, 0.19172294848166443, 7.218269559835735e-10, 0.0317741799287896, 3.9826084453929684e-7, 5.005231467491415e-7, 0.09995935394408918, 0.30004089901876024, 0.00999460673549988, 5.178145386630504e-8, 3.714992485079132e-8, 5.229419020007247e-6, 6.871429675796394e-8, 5.040637233611971e-6, 1.6909614724980253e-6, 2.5041573913987372e-17, 0.006999806991160331, 1.9300883966852184e-7, 2.3808903519156556e-7, 4.4409090022701065e-8]
 [0.013002670675854911, 0.18699194546955783, 1.049323517342023e-9, 0.02707833467623004, 3.596573982134101e-7, 4.230620972419726e-7, 0.09993191719332849, 0.3000687867927592, 0.009990985412449237, 4.426632357885486e-8, 3.1717470184457415e-8, 8.707148275200555e-6, 1.753988228736806e-7, 8.159541828820095e-6, 4.28235499736743e-6, 2.134072762166874e-17, 0.006999677462783783, 3.225372162160811e-7, 4.29253130312003e-7, 2.484238183958042e-7]
 [0.01754950653069442, 0.18244010960656096, 1.3641806124928415e-9, 0.022563570556883728, 3.361162798275428e-7, 3.7150093428726335e-7, 0.09990309462743716, 0.30009836544883595, 0.009987255299681627, 3.931687421453365e-8, 2.8130812802630142e-8, 1.2231150049080595e-5, 3.3462364587004975e-7, 1.103334852290569e-5, 8.113769678679281e-6, 1.7782593323554993e-17, 0.0069995442449338795, 4.55755066120686e-7, 5.171121404557453e-7, 7.09178639855165e-7]
 [0.022860660993157974, 0.17711993361265657, 1.7318456679719292e-9, 0.017295319170346254, 3.1879075517672294e-7, 3.280175981175663e-7, 0.0998630917757628, 0.30013989594565554, 0.009982163705371506, 3.519652711590188e-8, 2.5136768154051193e-8, 1.6956872533522293e-5, 6.253075543101413e-7, 1.439191013308264e-5, 1.50368204130258e-5, 1.3630627583154951e-17, 0.006999362663023951, 6.373369760492056e-7, 5.039634032907156e-7, 1.6196514074344916e-6]
 [0.027755823531265923, 0.1722114557342829, 2.070707321657687e-9, 0.012451819509586418, 3.09577570200403e-7, 2.984875701896153e-7, 0.0998138159158085, 0.3001917511617734, 0.00997597062665378, 3.244422538320162e-8, 2.313126337034893e-8, 2.2598805585100702e-5, 1.0726062363264699e-6, 1.7668944300683476e-5, 2.5579706458181664e-5, 9.813413259159095e-18, 0.006999142070090901, 8.579299090988792e-7, 4.4917481055362547e-7, 2.8096234730725815e-6]
 [0.03180047574896728, 0.16814808737553658, 2.3507725368492532e-9, 0.008472078039750567, 3.0608021229872864e-7, 2.798406006589666e-7, 0.09975168783182878, 0.300258033967349, 0.009968213586476125, 3.07440294917979e-8, 2.1888709888538225e-8, 2.9549391209733653e-5, 1.737052957445355e-6, 2.0753009296102627e-5, 4.1107860274511314e-5, 6.676936081814453e-18, 0.006998865973340087, 1.1340266599123846e-6, 4.0097466626237656e-7, 4.09549379898284e-6]
 [0.03442055718853232, 0.16550584277895308, 2.5323171579936213e-9, 0.005925149987065278, 3.0614394582593074e-7, 2.7051628714958993e-7, 0.09968231993256006, 0.30033293123066496, 0.009959560939629304, 2.9921030796856565e-8, 2.128523844055769e-8, 3.7208263766210764e-5, 2.5639881218245094e-6, 2.3218225998936952e-5, 6.0332749267068424e-5, 4.669674612663626e-18, 0.0069985580361970326, 1.4419638029664935e-6, 3.7454926288577253e-7, 5.1643729314177814e-6]
 ⋮
 [0.03791793802829607, 0.16180449828280613, 2.7768370495177913e-9, 0.0030823660560272107, 3.14521832227949e-7, 2.663442341942579e-7, 0.099083015665936, 0.3009948161266857, 0.00988381094641692, 2.961991770410293e-8, 2.1060454565632512e-8, 0.00010338319436372564, 1.0628140212378494e-5, 2.9835098929070707e-5, 0.00024893814146343687, 2.4292459347208345e-18, 0.006995852938418454, 4.1470615815449725e-6, 4.3591304814339387e-7, 8.780747086917043e-6]
 [0.03815122407263181, 0.16149335659572692, 2.7939409720765736e-9, 0.003096645006682394, 3.1441730293333357e-7, 2.6577110284299975e-7, 0.09885950529038474, 0.3012439180124001, 0.009855333713220338, 2.9534366335576414e-8, 2.0998617396183096e-8, 0.00012822282433546487, 1.3697755561961454e-5, 3.0219403713939676e-5, 0.00032198854211351434, 2.440499329742852e-18, 0.006994830897031649, 5.169102968349309e-6, 4.6944787133821387e-7, 9.631793047227356e-6]
 [0.03846176807523067, 0.16107438880150843, 2.8167539200764392e-9, 0.0031287167377469284, 3.130048446599601e-7, 2.6394989793090676e-7, 0.09855039498642384, 0.30158891371945085, 0.009815972945207875, 2.930446690402043e-8, 2.083203837538137e-8, 0.00016256117508267194, 1.7931704280207427e-5, 3.0249851522808104e-5, 0.0004240175943222341, 2.465775406915971e-18, 0.006993413750805722, 6.586249194276202e-6, 5.108442061897667e-7, 1.0691490226114317e-5]
 [0.038929997230639016, 0.1604402370546664, 2.851149288198812e-9, 0.0031795600755990406, 3.0972897906069453e-7, 2.602522829601712e-7, 0.09808114604225779, 0.3021129375348955, 0.009756427876936317, 2.8857054777614536e-8, 2.0507650745238607e-8, 0.00021451971258084569, 2.4313110493778785e-5, 2.984486304939207e-5, 0.0005806906609807024, 2.505845589866296e-18, 0.0069912600590668235, 8.73994093317433e-6, 5.644795502477369e-7, 1.20987318349133e-5]
 [0.039731796287462866, 0.15934875829742107, 2.910031107146615e-9, 0.0032678397244506998, 3.0340454593255876e-7, 2.5336827192290844e-7, 0.09727159520683847, 0.30301666821862416, 0.009654512408596433, 2.8039000372424075e-8, 1.991446359639732e-8, 0.0003034866969101804, 3.515693408225824e-5, 2.884332434222363e-5, 0.0008554037161571963, 2.5754197332981396e-18, 0.006987546308720154, 1.2453691279844245e-5, 6.384025603676968e-7, 1.4123181158100555e-5]
 [0.04094318678623546, 0.15768509187834287, 2.9989714875514865e-9, 0.0034038157823948153, 2.939882128755269e-7, 2.43206001729755e-7, 0.09603188713491921, 0.304398991005756, 0.009500566541513962, 2.6846369481449033e-8, 1.904976991469038e-8, 0.0004379930888116984, 5.130948406305055e-5, 2.731177344979706e-5, 0.0012863759435122486, 2.6825839311824933e-18, 0.006981869477596392, 1.8130522403605936e-5, 7.24905597139957e-7, 1.6655501124600897e-5]
 [0.04265456099862558, 0.15530170721543893, 3.1246155060271677e-9, 0.0036015752224973375, 2.814477983198598e-7, 2.2972054943079987e-7, 0.09424347009700185, 0.30638970302322815, 0.00928289784467482, 2.528730342602189e-8, 1.7919684960259242e-8, 0.0006285309299580898, 7.356402881817139e-5, 2.5311076152674727e-5, 0.001929659048706679, 2.8384402789327404e-18, 0.0069737007495245485, 2.6299250475450097e-5, 8.253072229358654e-7, 1.9841700593870324e-5]
 [0.044793931660118226, 0.15226289579317065, 3.281711134773703e-9, 0.0038589221832575496, 2.668944396446824e-7, 2.1414675862675267e-7, 0.09194251736341381, 0.3089455007693317, 0.009010154414799033, 2.352093124222566e-8, 1.663978869859591e-8, 0.00086811208533013, 0.00010022358782918614, 2.305697615943232e-5, 0.0027942303053253683, 3.0412581944159112e-18, 0.006963219964939301, 3.678003506069795e-5, 9.439336216189184e-7, 2.3887359967470606e-5]
 [0.04738795712746251, 0.14848196819379955, 3.472264655035832e-9, 0.004187711120538974, 2.5064148591231464e-7, 1.968814170125402e-7, 0.08904810542258144, 0.3121528528950734, 0.008678047248147587, 2.160558060909926e-8, 1.5252579424714244e-8, 0.0011615458041670677, 0.00013035939391932964, 2.063048330498102e-5, 0.003939836311621362, 3.3003803021585388e-18, 0.006950068615422142, 4.99313845778581e-5, 1.0960311780641945e-6, 2.93914710095533e-5]
 [0.05036882066239134, 0.14399340437115474, 3.6913545076957686e-9, 0.004591322479293651, 2.3347510067678841e-7, 1.7884243621649037e-7, 0.08556749410075942, 0.3160000520160919, 0.008293774589266539, 1.9649652481043972e-8, 1.383677779299112e-8, 0.0015041058995731492, 0.00016128741143367365, 1.8176658967239333e-5, 0.0054015182090251, 3.618470767288328e-18, 0.006934279699570879, 6.572030042912128e-5, 1.2906023386937797e-6, 3.683937182822645e-5]
 [0.05364912800384795, 0.1388525663433388, 3.932627740345212e-9, 0.005072852392385736, 2.160105896887423e-7, 1.6077416721927868e-7, 0.08152165691845746, 0.3204605702073428, 0.007866251982276732, 1.772858450647807e-8, 1.2447110292692606e-8, 0.0018899286669815385, 0.00018974903053163954, 1.5799558796591456e-5, 0.007213605828677907, 3.997969685509972e-18, 0.006915930516551771, 8.406948344822905e-5, 1.5343173858417772e-6, 4.67082381089522e-5]
 [0.05646254720110724, 0.13424842010171048, 4.139733781936821e-9, 0.00552313972545095, 2.0189808613219926e-7, 1.464545080585167e-7, 0.0778424951212836, 0.324507530466733, 0.00749401417188585, 1.622296660466674e-8, 1.13586637905381e-8, 0.0022305051646553066, 0.0002087163072622969, 1.396934873781403e-5, 0.008964884997558698, 4.352845989434373e-18, 0.006899219722669947, 0.00010078027733005331, 1.7721521050343073e-6, 5.682962012818098e-5]






plot(sol)









plot(sol, xscale=:log10, tspan=(1e-6, 60), layout=(3,1))











7.6 Geometric Properties


7.6.1 Linear Ordinary Differential Equations

The simplest ordinary differential equation is the scalar linear ODE, which is given in the form

u′=αuu' = \alpha u

We can solve this by noticing that (eαt)′=αeαt(e^{\alpha t})^\prime = \alpha e^{\alpha t} satisfies the differential equation and thus the general solution is:

u(t)=u(0)eαtu(t) = u(0)e^{\alpha t}

From the analytical solution we have that:


	If Re(α)>0Re(\alpha) > 0 then u(t)→∞u(t) \rightarrow \infty as t→∞t \rightarrow \infty

	If Re(α)<0Re(\alpha) < 0 then u(t)→0u(t) \rightarrow 0 as t→∞t \rightarrow \infty

	If Re(α)=0Re(\alpha) = 0 then u(t)u(t) has a constant or periodic solution.



This theory can then be extended to multivariable systems in the same way as the discrete dynamics case. Let uu be a vector and have

u′=Auu' = Au

be a linear ordinary differential equation. Assuming AA is diagonalizable, we diagonalize A=P−1DPA = P^{-1}DP to get

Pu′=DPuPu' = DPu

and change coordinates z=Puz = Pu so that we have

z′=Dzz' = Dz

which decouples the equation into a system of linear ordinary differential equations which we solve individually. Thus we see that, similarly to the discrete dynamical system, we have that:


	If all of the eigenvalues negative, then u(t)→0u(t) \rightarrow 0 as t→∞t \rightarrow \infty

	If any eigenvalue is positive, then u(t)→∞u(t) \rightarrow \infty as t→∞t \rightarrow \infty





7.6.2 Nonlinear Ordinary Differential Equations

As with discrete dynamical systems, the geometric properties extend locally to the linearization of the continuous dynamical system as defined by:

u′=dfduuu' = \frac{df}{du} u

where dfdu\frac{df}{du} is the Jacobian of the system. This is a consequence of the Hartman-Grubman Theorem.




7.7 Numerically Solving Ordinary Differential Equations


7.7.1 Euler’s Method

To numerically solve an ordinary differential equation, one turns the continuous equation into a discrete equation by discretizing it. The simplest discretization is the Euler method. The Euler method can be thought of as a simple approximation replacing dtdt with a small non-infinitesimal Δt\Delta t. Thus we can approximate

f(u,p,t)=u′=dudt≈ΔuΔtf(u,p,t) = u' = \frac{du}{dt} \approx \frac{\Delta u}{\Delta t}

and now since Δu=un+1−un\Delta u = u_{n+1} - u_n we have that

Δtf(u,p,t)=un+1−un\Delta t f(u,p,t) = u_{n+1} - u_n

We need to make a choice as to where we evaluate ff at. The simplest approximation is to evaluate it at tnt_n with unu_n where we already have the data, and thus we re-arrange to get

un+1=un+Δtf(u,p,t)u_{n+1} = u_n + \Delta t f(u,p,t)

This is the Euler method.

We can interpret it more rigorously by looking at the Taylor series expansion. First write out the Taylor series for the ODE’s solution in the near future:

u(t+Δt)=u(t)+Δtu′(t)+Δt22u″(t)+…u(t+\Delta t) = u(t) + \Delta t u'(t) + \frac{\Delta t^2}{2} u''(t) + \ldots

Recall that u′=f(u,p,t)u' = f(u,p,t) by the definition of the ODE system, and thus we have that

u(t+Δt)=u(t)+Δtf(u,p,t)+𝒪(Δt2)u(t+\Delta t) = u(t) + \Delta t f(u,p,t) + \mathcal{O}(\Delta t^2)

This is a first order approximation because the error in our step can be expresed as an error in the derivative, i.e.

u(t+Δt)−u(t)Δt=f(u,p,t)+𝒪(Δt)\frac{u(t + \Delta t) - u(t)}{\Delta t} = f(u,p,t) + \mathcal{O}(\Delta t)



7.7.2 Higher Order Methods

We can use this analysis to extend our methods to higher order approximation by simply matching the Taylor series to a higher order. Intuitively, when we developed the Euler method we had to make a choice:

un+1=un+Δtf(u,p,t)u_{n+1} = u_n + \Delta t f(u,p,t)

where do we evaluate ff? One may think that the best derivative approximation my come from the middle of the interval, in which case we might want to evaluate it at t+Δt2t + \frac{\Delta t}{2}. To do so, we can use the Euler method to approximate the value at t+Δt2t + \frac{\Delta t}{2} and then use that value to approximate the derivative at t+Δt2t + \frac{\Delta t}{2}. This looks like:

k1=f(un,p,t)k2=f(un+Δt2k1,p,t+Δt2)un+1=un+Δtk2
\begin{align}
k_1 &= f(u_n,p,t)\\
k_2 &= f(u_n + \frac{\Delta t}{2} k_1,p,t + \frac{\Delta t}{2})\\
u_{n+1} &= u_n + \Delta t k_2
\end{align}


which we can also write as:

un+1=un+Δtf(un+Δt2fn,p,t+Δt2)
u_{n+1} = u_n + \Delta t f(u_n + \frac{\Delta t}{2} f_n,p,t + \frac{\Delta t}{2})


where fn=f(un,p,t)f_n = f(u_n,p,t). If we do the two-dimensional Taylor expansion we get:

un+1=un+Δtfn+Δt22(ft+fuf)(un,p,t)+Δt36(ftt+2ftuf+fuuf2)(un,p,t)
\begin{align}
u_{n+1} &= u_n\\
&+ \Delta t f_n\\
&+ \frac{\Delta t^2}{2}(f_t + f_u f)(u_n,p,t)\\
&+ \frac{\Delta t^3}{6} (f_{tt} + 2f_{tu}f + f_{uu}f^2)(u_n,p,t)
\end{align}


which when we compare against the true Taylor series:

u(t+Δt)=un+Δtf(un,p,t)+Δt22(ft+fuf)(un,p,t)+Δt36(ftt+2ftu+fuuf2+ftfu+fu2f)(un,p,t)
\begin{align}
u(t+\Delta t) &= u_n\\
&+ \Delta t f(u_n,p,t)\\
&+ \frac{\Delta t^2}{2}(f_t + f_u f)(u_n,p,t)\\
&+ \frac{\Delta t^3}{6}(f_{tt} + 2f_{tu} + f_{uu}f^2 + f_t f_u + f_u^2 f)(u_n,p,t)
\end{align}


and thus we see that

u(t+Δt)−un=𝒪(Δt3)
u(t + \Delta t) - u_n = \mathcal{O}(\Delta t^3)




7.7.3 Runge-Kutta Methods

More generally, Runge-Kutta methods are of the form:

k1=f(un,p,t)k2=f(un+Δt(a21k1),p,t+Δtc2)k3=f(un+Δt(a31k1+a32k2),p,t+Δtc3)⋮un+1=un+Δt(b1k1+…+bsks)
\begin{align}
k_1 &= f(u_n,p,t)\\
k_2 &= f(u_n + \Delta t (a_{21} k_1),p,t + \Delta t c_2)\\
k_3 &= f(u_n + \Delta t (a_{31} k_1 + a_{32} k_2),p,t + \Delta t c_3)\\
\vdots\\
u_{n+1} &= u_n + \Delta t (b_1 k_1 + \ldots + b_s k_s)
\end{align}


where ss is the number of stages. These can be expressed as a tableau:



The order of the Runge-Kutta method is simply the number of terms in the Taylor series that ends up being matched by the resulting expansion. For example, for the 4th order you can expand out and see that the following equations need to be satisfied:



The classic Runge-Kutta method is also known as RK4 and is the following 4th order method:

k1=f(un,p,t)k2=f(un+Δt2k1,p,t+Δt2)k3=f(un+Δt2k2,p,t+Δt2)k4=f(un+Δtk3,p,t+Δt)⋮un+1=un+Δt6(k1+2k2+2k3+k4)
\begin{align}
k_1 &= f(u_n, p, t)\\
k_2 &= f(u_n + \frac{\Delta t}{2} k_1, p, t + \frac{\Delta t}{2})\\
k_3 &= f(u_n + \frac{\Delta t}{2} k_2, p, t + \frac{\Delta t}{2})\\
k_4 &= f(u_n + \Delta t k_3, p, t + \Delta t)\\
\vdots\\
u_{n+1} &= u_n + \frac{\Delta t}{6}(k_1 + 2 k_2 + 2 k_3 + k_4)\\
\end{align}


While it’s widely known and simple to remember, it’s not necessarily good. The way to judge a Runge-Kutta method is by looking at the size of the coefficient of the next term in the Taylor series: if it’s large then the true error can be larger, even if it matches another one asymptotically.




7.8 What Makes a Good Method?


7.8.1 Leading Truncation Coefficients

For given orders of explicit Runge-Kutta methods, lower bounds for the number of f evaluations (stages) required to receive a given order are known:



While unintuitive, using the method is not necessarily the one that reduces the coefficient the most. The reason is because what is attempted in ODE solving is precisely the opposite of the analysis. In the ODE analysis, we’re looking at behavior as Δt→0\Delta t \rightarrow 0. However, when efficiently solving ODEs, we want to use the largest Δt\Delta t which satisfies error tolerances.

The most widely used method is the Dormand-Prince 5th order Runge-Kutta method, whose tableau is represented as:



Notice that this method takes 7 calls to f for 5th order. The key to this method is that it has optimized leading truncation error coefficients, under some extra assumptions which allow for the analysis to be simplified.



7.8.2 Looking at the Effects of RK Method Choices and Code Optimizations

Pulling from the SciML Benchmarks, we can see the general effect of these different properties on a given set of Runge-Kutta methods:



Here, the order of the method is given in the name. We can see one immediate factor is that, as the requested error in the calculation decreases, the higher order methods become more efficient. This is because to decrease error, you decrease Δt\Delta t, and thus the exponent difference with respect to Δt\Delta t has more of a chance to pay off for the extra calls to f. Additionally, we can see that order is not the only determining factor for efficiency: the Vern8 method seems to have a clear approximate 2.5x performance advantage over the whole span of the benchmark compared to the DP8 method, even though both are 8th order methods. This is because of the leading truncation terms: with a small enough Δt\Delta t, the more optimized method (Vern8) will generally have low error in a step for the same Δt\Delta t because the coefficients in the expansion are generally smaller.

This is a factor which is generally ignored in high level discussions of numerical differential equations, but can lead to orders of magnitude differences! This is highlighted in the following plot:



Here we see ODEInterface.jl’s ODEInterfaceDiffEq.jl wrapper into the SciML common interface for the standard dopri method from Fortran, and ODE.jl, the original ODE solvers in Julia, have a performance disadvantage compared to the DifferentialEquations.jl methods due in part to some of the coding performance pieces that we discussed in the first few lectures.

Specifically, a large part of this can be attributed to inlining of the higher order functions, i.e. ODEs are defined by a user function and then have to be called from the solver. If the solver code is compiled as a shared library ahead of time, like is commonly done in C++ or Fortran, then there can be a function call overhead that is eliminated by JIT compilation optimizing across the function call barriers (known as interprocedural optimization). This is one way which a JIT system can outperform an AOT (ahead of time) compiled system in real-world code (for completeness, two other ways are by doing full function specialization, which is something that is not generally possible in AOT languages given that you cannot know all types ahead of time for a fully generic function, and calling C itself, i.e. c-ffi (foreign function interface), can be optimized using the runtime information of the JIT compiler to outperform C!).

The other performance difference being shown here is due to optimization of the method. While a slightly different order, we can see a clear difference in the performance of RK4 vs the coefficient optimized methods. It’s about the same order of magnitude as “highly optimized code differences”, showing that both the Runge-Kutta coefficients and the code implementation can have a significant impact on performance.

Taking a look at what happens when interpreted languages get involved highlights some of the code challenges in this domain. Let’s take a look at for example the results when simulating 3 ODE systems with the various RK methods:



We see that using interpreted languages introduces around a 50x-100x performance penalty. If you recall in your previous lecture, the discrete dynamical system that was being simulated was the 3-dimensional Lorenz equation discretized by Euler’s method, meaning that the performance of that implementation is a good proxy for understanding the performance differences in this graph. Recall that in previous lectures we saw an approximately 5x performance advantage when specializing on the system function and size and around 10x by reducing allocations: these features account for the performance differences noticed between library implementations, which are then compounded by the use of different RK methods (note that R uses “call by copy” which even further increases the memory usages and makes standard usage of the language incompatible with mutating function calls!).



7.8.3 Stability of a Method

Simply having an order on the truncation error does not imply convergence of the method. The disconnect is that the errors at a given time point may not dissipate. What also needs to be checked is the asymptotic behavior of a disturbance. To see this, one can utilize the linear test problem:

u′=αuu' = \alpha u

and ask the question, does the discrete dynamical system defined by the discretized ODE end up going to zero? You would hope that the discretized dynamical system and the continuous dynamical system have the same properties in this simple case, and this is known as linear stability analysis of the method.

As an example, take a look at the Euler method. Recall that the Euler method was given by:

un+1=un+Δtf(un,p,t)u_{n+1} = u_n + \Delta t f(u_n,p,t)

When we plug in the linear test equation, we get that

un+1=un+Δtαunu_{n+1} = u_n + \Delta t \alpha u_n

If we let z=Δtαz = \Delta t \alpha, then we get the following:

un+1=un+zun=(1+z)unu_{n+1} = u_n + z u_n = (1+z)u_n

which is stable when zz is in the shifted unit circle. This means that, as a necessary condition, the step size Δt\Delta t needs to be small enough that zz satisfies this condition, placing a stepsize limit on the method.



If Δt\Delta t is ever too large, it will cause the equation to overshoot zero, which then causes oscillations that spiral out to infinity.





Thus the stability condition places a hard constraint on the allowed Δt\Delta t which will result in a realistic simulation.

For reference, the stability regions of the 2nd and 4th order Runge-Kutta methods that we discussed are as follows:





7.8.4 Interpretation of the Linear Stability Condition

To interpret the linear stability condition, recall that the linearization of a system interprets the dynamics as locally being due to the Jacobian of the system. Thus

u′=f(u,p,t)u' = f(u,p,t)

is locally equivalent to

u′=dfduuu' = \frac{df}{du}u

You can understand the local behavior through diagonalizing this matrix. Therefore, the scalar for the linear stability analysis is performing an analysis on the eigenvalues of the Jacobian. The method will be stable if the largest eigenvalues of df/du are all within the stability limit. This means that stability effects are different throughout the solution of a nonlinear equation and are generally understood locally (though different more comprehensive stability conditions exist!).



7.8.5 Implicit Methods

If instead of the Euler method we defined ff to be evaluated at the future point, we would receive a method like:

un+1=un+Δtf(un+1,p,t+Δt)u_{n+1} = u_n + \Delta t f(u_{n+1},p,t+\Delta t)

in which case, for the stability calculation we would have that

un+1=un+Δtαunu_{n+1} = u_n + \Delta t \alpha u_n

or

(1−z)un+1=un(1-z) u_{n+1} = u_n

which means that

un+1=11−zunu_{n+1} = \frac{1}{1-z} u_n

which is stable for all Re(z)<0Re(z) < 0 a property which is known as A-stability. It is also stable as z→∞z \rightarrow \infty, a property known as L-stability. This means that for equations with very ill-conditioned Jacobians, this method is still able to be use reasonably large stepsizes and can thus be efficient.





7.8.6 Stiffness and Timescale Separation

From this we see that there is a maximal stepsize whenever the eigenvalues of the Jacobian are sufficiently large. It turns out that’s not an issue if the phenomena we see are fast, since then the total integration time tends to be small. However, if we have some equations with both fast modes and slow modes, like the Robertson equation, then it is very difficult because in order to resolve the slow dynamics over a long timespan, one needs to ensure that the fast dynamics do not diverge. This is a property known as stiffness. Stiffness can thus be approximated in some sense by the condition number of the Jacobian. The condition number of a matrix is its maximal eigenvalue divided by its minimal eigenvalue and gives a rough measure of the local timescale separations. If this value is large and one wants to resolve the slow dynamics, then explict integrators, like the explicit Runge-Kutta methods described before, have issues with stability. In this case implicit integrators (or other forms of stabilized stepping) are required in order to efficiently reach the end time step.






7.9 Exploiting Continuity

So far, we have looked at ordinary differential equations as a Δt→0\Delta t \rightarrow 0 formulation of a discrete dynamical system. However, continuous dynamics and discrete dynamics have very different characteristics which can be utilized in order to arrive at simpler models and faster computations.


7.9.1 Geometric Properties: No Jumping and the Poincaré–Bendixson theorem

In terms of geometric properties, continuity places a large constraint on the possible dynamics. This is because of the physical constraint on “jumping”, i.e. flows of differential equations cannot jump over each other. If you are ever at some point in phase space and ff is not explicitly time-dependent, then the direction of u′u' is uniquely determined (given reasonable assumptions on ff), meaning that flow lines (solutions to the differential equation) can never cross.

A result from this is the Poincaré–Bendixson theorem, which states that, with any arbitrary (but nice) two dimensional continuous system, you can only have 3 behaviors:


	Steady state behavior

	Divergence

	Periodic orbits



A simple proof by picture shows this.
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8 Forward-Mode Automatic Differentiation (AD) via High Dimensional Algebras


8.1 Youtube Video Link



8.2 Machine Epsilon and Roundoff Error

Floating point arithmetic is relatively scaled, which means that the precision that you get from calculations is relative to the size of the floating point numbers. Generally, you have 16 digits of accuracy in (64-bit) floating point operations. To measure this, we define machine epsilon as the value by which 1 + E = 1. For floating point numbers, this is:


eps(Float64)



2.220446049250313e-16





However, since it’s relative, this value changes as we change our reference value:


@show eps(1.0)
@show eps(0.1)
@show eps(0.01)



eps(1.0) = 2.220446049250313e-16
eps(0.1) = 1.3877787807814457e-17
eps(0.01) = 1.734723475976807e-18




1.734723475976807e-18





Thus issues with roundoff error come when one subtracts out the higher digits. For example, (x+ϵ)−x(x + \epsilon) - x should just be ϵ\epsilon if there was no roundoff error, but if ϵ\epsilon is small then this kicks in. If x=1x = 1 and ϵ\epsilon is of size around 10−1010^{-10}, then x+ϵx+ \epsilon is correct for 10 digits, dropping off the smallest 6 due to error in the addition to 11. But when you subtract off xx, you don’t get those digits back, and thus you only have 6 digits of ϵ\epsilon correct.

Let’s see this in action:


ϵ = 1e-10rand()
@show ϵ
@show (1+ϵ)
ϵ2 = (1+ϵ) - 1
(ϵ - ϵ2)



ϵ = 6.50996165301225e-11
1 + ϵ = 1.0000000000650997




-8.687561295301752e-17





See how ϵ\epsilon is only rebuilt at accuracy around 10−1610^{-16} and thus we only keep around 6 digits of accuracy when it’s generated at the size of around 10−1010^{-10}!


8.2.1 Finite Differencing and Numerical Stability

To start understanding how to compute derivatives on a computer, we start with finite differencing. For finite differencing, recall that the definition of the derivative is:

f′(x)=limϵ→0f(x+ϵ)−f(x)ϵf'(x) = \lim_{\epsilon \rightarrow 0} \frac{f(x+\epsilon)-f(x)}{\epsilon}

Finite differencing directly follows from this definition by choosing a small ϵ\epsilon. However, choosing a good ϵ\epsilon is very difficult. If ϵ\epsilon is too large than there is error since this definition is asymptotic. However, if ϵ\epsilon is too small, you receive roundoff error. To understand why you would get roundoff error, recall that floating point error is relative, and can essentially store 16 digits of accuracy. So let’s say we choose ϵ=10−6\epsilon = 10^{-6}. Then f(x+ϵ)−f(x)f(x+\epsilon) - f(x) is roughly the same in the first 6 digits, meaning that after the subtraction there is only 10 digits of accuracy, and then dividing by 10−610^{-6} simply brings those 10 digits back up to the correct relative size.



This means that we want to choose ϵ\epsilon small enough that the 𝒪(ϵ2)\mathcal{O}(\epsilon^2) error of the truncation is balanced by the O(1/ϵ)O(1/\epsilon) roundoff error. Under some minor assumptions, one can argue that the average best point is (E)\sqrt(E), where E is machine epsilon


@show eps(Float64)
@show sqrt(eps(Float64))



eps(Float64) = 2.220446049250313e-16
sqrt(eps(Float64)) = 1.4901161193847656e-8




1.4901161193847656e-8





This means we should not expect better than 8 digits of accuracy, even when things are good with finite differencing.



The centered difference formula is a little bit better, but this picture suggests something much better…



8.2.2 Differencing in a Different Dimension: Complex Step Differentiation

The problem with finite differencing is that we are mixing our really small number with the really large number, and so when we do the subtract we lose accuracy. Instead, we want to keep the small perturbation completely separate.

To see how to do this, assume that x∈ℝx \in \mathbb{R} and assume that ff is complex analytic. You want to calculate a real derivative, but your function just happens to also be complex analytic when extended to the complex plane. Thus it has a Taylor series, and let’s see what happens when we expand out this Taylor series purely in the complex direction:

f(x+ih)=f(x)+f′(x)ih−12f″(x)h2+𝒪(h3)f(x+ih) = f(x) + f'(x)ih - \frac{1}{2}f''(x)h^2 + \mathcal{O}(h^3)

which we can re-arrange as:

if′(x)=f(x+ih)−f(x)h+12f″(x)h+𝒪(h2)if'(x) = \frac{f(x+ih) - f(x)}{h} + \frac{1}{2}f''(x)h + \mathcal{O}(h^2)

Since xx is real and ff is real-valued on the reals, if′if' is purely imaginary. So let’s take the imaginary parts of both sides:

f′(x)=Im(f(x+ih))h+𝒪(h2)f'(x) = \frac{Im(f(x+ih))}{h} + \mathcal{O}(h^2)

since Im(f(x))=0Im(f(x)) = 0 (since it’s real valued, the next order term cancels for the same reason). Thus with a sufficiently small choice of hh, this is the complex step differentiation formula for calculating the derivative.

But to understand the computational advantage, recall that xx is pure real, and thus x+ihx+ih is a complex number where the hh never directly interacts with xx since a complex number is a two dimensional number where you keep the two pieces separate. Thus there is no numerical cancellation by using a small value of hh, and thus, due to the relative precision of floating point numbers, both the real and imaginary parts will be computed to (approximately) 16 digits of accuracy for any choice of hh.



8.2.3 Derivatives as nilpotent sensitivities

The derivative measures the sensitivity of a function, i.e. how much the function output changes when the input changes by a small amount ϵ\epsilon:

f(a+ϵ)=f(a)+f′(a)ϵ+o(ϵ).f(a + \epsilon) = f(a) + f'(a) \epsilon + o(\epsilon).

In the following we will ignore higher-order terms; formally we set ϵ2=0\epsilon^2 = 0. This form of analysis can be made rigorous through a form of non-standard analysis called Smooth Infinitesimal Analysis [1], though note that nilpotent infinitesimal requires constructive logic, and thus proof by contradiction is not allowed in this logic due to a lack of the law of the excluded middle.

A function ff will be represented by its value f(a)f(a) and derivative f′(a)f'(a), encoded as the coefficients of a degree-1 (Taylor) polynomial in ϵ\epsilon:

f⇝f(a)+ϵf′(a)f \rightsquigarrow f(a) + \epsilon f'(a)

Conversely, if we have such an expansion in ϵ\epsilon for a given function ff, then we can identify the coefficient of ϵ\epsilon as the derivative of ff.



8.2.4 Dual numbers

Thus, to extend the idea of complex step differentiation beyond complex analytic functions, we define a new number type, the dual number. A dual number is a multidimensional number where the sensitivity of the function is propagated along the dual portion.

Here we will now start to use ϵ\epsilon as a dimensional signifier, like ii, jj, or kk for quaternion numbers. In order for this to work out, we need to derive an appropriate algebra for our numbers. To do this, we will look at Taylor series to make our algebra reconstruct differentiation.

Note that the chain rule has been explicitly encoded in the derivative part.

f(a+ϵ)=f(a)+ϵf′(a)f(a + \epsilon) = f(a) + \epsilon f'(a)

to first order. If we have two functions

f⇝f(a)+ϵf′(a)f \rightsquigarrow f(a) + \epsilon f'(a) g⇝g(a)+ϵg′(a)g \rightsquigarrow g(a) + \epsilon g'(a)

then we can manipulate these Taylor expansions to calculate combinations of these functions as follows. Using the nilpotent algebra, we have that:

(f+g)=[f(a)+g(a)]+ϵ[f′(a)+g′(a)](f + g) = [f(a) + g(a)] + \epsilon[f'(a) + g'(a)]

(f⋅g)=[f(a)⋅g(a)]+ϵ[f(a)⋅g′(a)+g(a)⋅f′(a)](f \cdot g) = [f(a) \cdot g(a)] + \epsilon[f(a) \cdot g'(a) + g(a) \cdot f'(a) ]

From these we can infer the derivatives by taking the component of ϵ\epsilon. These also tell us the way to implement these in the computer.



8.2.5 Computer representation

Setup (not necessary from the REPL):


using InteractiveUtils  # only needed when using Weave




Each function requires two pieces of information and some particular “behavior”, so we store these in a struct. It’s common to call this a “dual number”:


struct Dual{T}
    val::T   # value
    der::T  # derivative
end




Each Dual object represents a function. We define arithmetic operations to mirror performing those operations on the corresponding functions.

We must first import the operations from Base:


Base.:+(f::Dual, g::Dual) = Dual(f.val + g.val, f.der + g.der)
Base.:+(f::Dual, α::Number) = Dual(f.val + α, f.der)
Base.:+(α::Number, f::Dual) = f + α

#=
You can also write:
import Base: +
f::Dual + g::Dual = Dual(f.val + g.val, f.der + g.der)
=#

Base.:-(f::Dual, g::Dual) = Dual(f.val - g.val, f.der - g.der)

# Product Rule
Base.:*(f::Dual, g::Dual) = Dual(f.val*g.val, f.der*g.val + f.val*g.der)
Base.:*(α::Number, f::Dual) = Dual(f.val * α, f.der * α)
Base.:*(f::Dual, α::Number) = α * f

# Quotient Rule
Base.:/(f::Dual, g::Dual) = Dual(f.val/g.val, (f.der*g.val - f.val*g.der)/(g.val^2))
Base.:/(α::Number, f::Dual) = Dual(α/f.val, -α*f.der/f.val^2)
Base.:/(f::Dual, α::Number) = f * inv(α) # Dual(f.val/α, f.der * (1/α))

Base.:^(f::Dual, n::Integer) = Base.power_by_squaring(f, n)  # use repeated squaring for integer powers




We can now define Duals and manipulate them:


fd = Dual(3, 4)
gd = Dual(5, 6)

fd + gd



Dual{Int64}(8, 10)






fd * gd



Dual{Int64}(15, 38)






fd * (gd + gd)



Dual{Int64}(30, 76)







8.2.6 Performance

It seems like we may have introduced significant computational overhead by creating a new data structure, and associated methods. Let’s see how the performance is:


add(a1, a2, b1, b2) = (a1+b1, a2+b2)



add (generic function with 1 method)






add(1, 2, 3, 4)

using BenchmarkTools
a, b, c, d = 1, 2, 3, 4
@btime add($(Ref(a))[], $(Ref(b))[], $(Ref(c))[], $(Ref(d))[])



  2.521 ns (0 allocations: 0 bytes)




(4, 6)






a = Dual(1, 2)
b = Dual(3, 4)

add(j1, j2) = j1 + j2
add(a, b)
@btime add($(Ref(a))[], $(Ref(b))[])



  2.462 ns (0 allocations: 0 bytes)




Dual{Int64}(4, 6)





It seems like we have lost no performance.


@code_native add(1, 2, 3, 4)



    




.text
    .file   "add"
    .globl  julia_add_1491                  # -- Begin function julia_add_1491
    .p2align    4, 0x90
    .type   julia_add_1491,@function
julia_add_1491:                         # @julia_add_1491
; ┌ @ In[13]:1 within `add`
    .cfi_startproc
# %bb.0:                                # %top
    pushq   %rbp
    .cfi_def_cfa_offset 16
    .cfi_offset %rbp, -16
    movq    %rsp, %rbp
    .cfi_def_cfa_register %rbp
    movq    %rdi, %rax
; │┌ @ int.jl:87 within `+`
    addq    %rcx, %rsi
    addq    %r8, %rdx
; │└
    movq    %rsi, (%rdi)
    movq    %rdx, 8(%rdi)
    popq    %rbp
    .cfi_def_cfa %rsp, 8
    retq
.Lfunc_end0:
    .size   julia_add_1491, .Lfunc_end0-julia_add_1491
    .cfi_endproc
; └
                                        # -- End function
    .section    ".note.GNU-stack","",@progbits






@code_native add(a, b)



    .text
    .file   "add"
    .globl  julia_add_1514                  # -- Begin function julia_add_1514
    .p2align    4, 0x90
    .type   julia_add_1514,@function
julia_add_1514:                         # @julia_add_1514
; ┌ @ In[15]:4 within `add`
    .cfi_startproc
# %bb.0:                                # %top
    pushq   %rbp
    .cfi_def_cfa_offset 16
    .cfi_offset %rbp, -16
    movq    %rsp, %rbp
    .cfi_def_cfa_register %rbp
    movq    %rdi, %rax
; │┌ @ In[9]:1 within `+` @ int.jl:87
    vmovdqu (%rdx), %xmm0
    vpaddq  (%rsi), %xmm0, %xmm0
; │└
    vmovdqu %xmm0, (%rdi)
    popq    %rbp
    .cfi_def_cfa %rsp, 8
    retq
.Lfunc_end0:
    .size   julia_add_1514, .Lfunc_end0-julia_add_1514
    .cfi_endproc
; └
                                        # -- End function
    .section    ".note.GNU-stack","",@progbits





We see that the data structure itself has disappeared, and we basically have a standard Julia tuple.



8.2.7 Defining Higher Order Primitives

We can also define functions of Dual objects, using the chain rule. To speed up our derivative function, we can directly hardcode the derivative of known functions which we call primitives. If f is a Dual representing the function ff, then exp(f) should be a Dual representing the function exp∘f\exp \circ f, i.e. with value exp(f(a))\exp(f(a)) and derivative (exp∘f)′(a)=exp(f(a))f′(a)(\exp \circ f)'(a) = \exp(f(a)) \, f'(a):


import Base: exp





exp(f::Dual) = Dual(exp(f.val), exp(f.val) * f.der)



exp (generic function with 14 methods)






fd



Dual{Int64}(3, 4)






exp(fd)



Dual{Float64}(20.085536923187668, 80.34214769275067)








8.3 Differentiating arbitrary functions

For functions where we don’t have a rule, we can recursively do dual number arithmetic within the function until we hit primitives where we know the derivative, and then use the chain rule to propagate the information back up. Under this algebra, we can represent a+ϵa + \epsilon as Dual(a, 1). Thus, applying f to Dual(a, 1) should give Dual(f(a), f'(a)). This is thus a 2-dimensional number for calculating the derivative without floating point error, using the compiler to transform our equations into dual number arithmetic. To differentiate an arbitrary function, we define a generic function and then change the algebra.


hf(x) = x^2 + 2
a = 3
xx = Dual(a, 1)



Dual{Int64}(3, 1)





Now we simply evaluate the function h at the Dual number xx:


hf(xx)



Dual{Int64}(11, 6)





The first component of the resulting Dual is the value h(a)h(a), and the second component is the derivative, h′(a)h'(a)!

We can codify this into a function as follows:


derivative(f, x) = f(Dual(x, one(x))).der



derivative (generic function with 1 method)





Here, one is the function that gives the value 11 with the same type as that of x.

Finally we can now calculate derivatives such as


derivative(x -> 3x^5 + 2, 2)



240





As a bigger example, we can take a pure Julia sqrt function and differentiate it by changing the internal algebra:


function newtons(x)
   a = x
   for i in 1:300
       a = 0.5 * (a + x/a)
   end
   a
end
@show newtons(2.0)
@show (newtons(2.0+sqrt(eps())) - newtons(2.0))/ sqrt(eps())
newtons(Dual(2.0,1.0))



newtons(2.0) = 1.414213562373095
(newtons(2.0 + sqrt(eps())) - newtons(2.0)) / sqrt(eps()) = 0.3535533994436264




Dual{Float64}(1.414213562373095, 0.35355339059327373)






8.3.1 Higher dimensions

How can we extend this to higher dimensional functions? For example, we wish to differentiate the following function f:ℝ2→ℝf: \mathbb{R}^2 \to \mathbb{R}:


fquad(x, y) = x^2 + x*y



fquad (generic function with 1 method)





Recall that the partial derivative ∂f/∂x\partial f/\partial x is defined by fixing yy and differentiating the resulting function of xx:


a, b = 3.0, 4.0

fquad_1(x) = fquad(x, b)  # single-variable function



fquad_1 (generic function with 1 method)





Since we now have a single-variable function, we can differentiate it:


derivative(fquad_1, a)



10.0





Under the hood this is doing


fquad(Dual(a, one(a)), b)



Dual{Float64}(21.0, 10.0)





Similarly, we can differentiate with respect to yy by doing


fquad_2(y) = fquad(a, y)  # single-variable function

derivative(fquad_2, b)



3.0





Note that we must do two separate calculations to get the two partial derivatives; in general, calculating the gradient ∇\nabla of a function f:ℝn→ℝf:\mathbb{R}^n \to \mathbb{R} requires nn separate calculations.



8.3.2 Implementation of higher-dimensional forward-mode AD

We can implement derivatives of functions f:ℝn→ℝf: \mathbb{R}^n \to \mathbb{R} by adding several independent partial derivative components to our dual numbers.

We can think of these as ϵ\epsilon perturbations in different directions, which satisfy ϵi2=ϵiϵj=0\epsilon_i^2 = \epsilon_i \epsilon_j = 0, and we will call ϵ\epsilon the vector of all perturbations. Then we have

f(a+ϵ)=f(a)+∇f(a)⋅ϵ+𝒪(ϵ2),f(a + \epsilon) = f(a) + \nabla f(a) \cdot \epsilon + \mathcal{O}(\epsilon^2),

where a∈ℝna \in \mathbb{R}^n and ∇f(a)\nabla f(a) is the gradient of ff at aa, i.e. the vector of partial derivatives in each direction. ∇f(a)⋅ϵ\nabla f(a) \cdot \epsilon is the directional derivative of ff in the direction ϵ\epsilon.

We now proceed similarly to the univariate case:

(f+g)(a+ϵ)=[f(a)+g(a)]+[∇f(a)+∇g(a)]⋅ϵ(f + g)(a + \epsilon) = [f(a) + g(a)] + [\nabla f(a) + \nabla g(a)] \cdot \epsilon

(f⋅g)(a+ϵ)=[f(a)+∇f(a)⋅ϵ][g(a)+∇g(a)⋅ϵ]=f(a)g(a)+[f(a)∇g(a)+g(a)∇f(a)]⋅ϵ.\begin{align}
(f \cdot g)(a + \epsilon) &= [f(a) + \nabla f(a) \cdot \epsilon ] \, [g(a) + \nabla g(a) \cdot \epsilon ] \\
&= f(a) g(a) + [f(a) \nabla g(a) + g(a) \nabla f(a)] \cdot \epsilon.
\end{align}

We will use the StaticArrays.jl package for efficient small vectors:


using StaticArrays

struct MultiDual{N,T}
    val::T
    derivs::SVector{N,T}
end

import Base: +, *

function +(f::MultiDual{N,T}, g::MultiDual{N,T}) where {N,T}
    return MultiDual{N,T}(f.val + g.val, f.derivs + g.derivs)
end

function *(f::MultiDual{N,T}, g::MultiDual{N,T}) where {N,T}
    return MultiDual{N,T}(f.val * g.val, f.val .* g.derivs + g.val .* f.derivs)
end



* (generic function with 335 methods)






gcubic(x, y) = x*x*y + x + y

(a, b) = (1.0, 2.0)

xx = MultiDual(a, SVector(1.0, 0.0))
yy = MultiDual(b, SVector(0.0, 1.0))

gcubic(xx, yy)



MultiDual{2, Float64}(5.0, [5.0, 2.0])





We can calculate the Jacobian of a function ℝn→ℝm\mathbb{R}^n \to \mathbb{R}^m by applying this to each component function:


fsvec(x, y) = SVector(x*x + y*y , x + y)

fsvec(xx, yy)



2-element SVector{2, MultiDual{2, Float64}} with indices SOneTo(2):
 MultiDual{2, Float64}(5.0, [2.0, 4.0])
 MultiDual{2, Float64}(3.0, [1.0, 1.0])





It would be possible (and better for performance in many cases) to store all of the partials in a matrix instead.

Forward-mode AD is implemented in a clean and efficient way in the ForwardDiff.jl package:


using ForwardDiff, StaticArrays

ForwardDiff.gradient( xx -> ( (x, y) = xx; x^2 * y + x*y ), [1, 2])



2-element Vector{Int64}:
 6
 2







8.3.3 Directional derivative and gradient of functions f:ℝn→ℝf: \mathbb{R}^n \to \mathbb{R}

For a function f:ℝn→ℝf: \mathbb{R}^n \to \mathbb{R} the basic operation is the directional derivative:

limϵ→0f(𝐱+ϵ𝐯)−f(𝐱)ϵ=[∇f(𝐱)]⋅𝐯,\lim_{\epsilon \to 0} \frac{f(\mathbf{x} + \epsilon \mathbf{v}) - f(\mathbf{x})}{\epsilon} =
[\nabla f(\mathbf{x})] \cdot \mathbf{v},

where ϵ\epsilon is still a single dimension and ∇f(𝐱)\nabla f(\mathbf{x}) is the direction in which we calculate.

We can directly do this using the same simple Dual numbers as above, using the same ϵ\epsilon, e.g.

f(x,y)=x2sin(y)f(x, y) = x^2  \sin(y)

f(x0+aϵ,y0+bϵ)=(x0+aϵ)2sin(y0+bϵ)=x02sin(y0)+ϵ[2ax0sin(y0)+x02bcos(y0)]+o(ϵ)\begin{align}
f(x_0 + a\epsilon, y_0 + b\epsilon) &= (x_0 + a\epsilon)^2  \sin(y_0 + b\epsilon) \\
&= x_0^2  \sin(y_0) + \epsilon[2ax_0  \sin(y_0) + x_0^2 b \cos(y_0)] + o(\epsilon)
\end{align}

so we have indeed calculated ∇f(x0,y0)⋅𝐯,\nabla f(x_0, y_0) \cdot \mathbf{v}, where 𝐯=(a,b)\mathbf{v} = (a, b) are the components that we put into the derivative component of the Dual numbers.

If we wish to calculate the directional derivative in another direction, we could repeat the calculation with a different 𝐯\mathbf{v}. A better solution is to use another independent epsilon ϵ\epsilon, expanding x=x0+a1ϵ1+a2ϵ2x = x_0 + a_1 \epsilon_1 + a_2 \epsilon_2 and putting ϵ1ϵ2=0\epsilon_1 \epsilon_2 = 0.

In particular, if we wish to calculate the gradient itself, ∇f(x0,y0)\nabla f(x_0, y_0), we need to calculate both partial derivatives, which corresponds to two directional derivatives, in the directions (1,0)(1, 0) and (0,1)(0, 1), respectively.



8.3.4 Forward-Mode AD as jvp

Note that another representation of the directional derivative is f′(x)vf'(x)v, where f′(x)f'(x) is the Jacobian or total derivative of ff at xx. To see the equivalence of this to a directional derivative, write it out in the standard basis:

wi=∑jmJijvjw_i = \sum_{j}^{m} J_{ij} v_{j}

Now write out what JJ means and we see that:

wi=∑jmdfidxjvj=∇fi(x)⋅vw_i = \sum_j^{m} \frac{df_i}{dx_j} v_j = \nabla f_i(x) \cdot v

The primitive action of forward-mode AD is f′(x)vf'(x)v!

This is also known as a Jacobian-vector product, or jvp for short.

We can thus represent vector calculus with multidimensional dual numbers as follows. Let d=[x,y]d =[x,y], the vector of dual numbers. We can instead represent this as:

d=d0+v1ϵ1+v2ϵ2d = d_0 + v_1 \epsilon_1 + v_2 \epsilon_2

where d0d_0 is the primal vector [x0,y0][x_0,y_0] and the viv_i are the vectors for the dual directions. If you work out this algebra, then note that a single application of ff to a multidimensional dual number calculates:

f(d)=f(d0)+f′(d0)v1ϵ1+f′(d0)v2ϵ2f(d) = f(d_0) + f'(d_0)v_1 \epsilon_1 + f'(d_0)v_2 \epsilon_2

i.e. it calculates the result of f(x,y)f(x,y) and two separate directional derivatives. Note that because the information about f(d0)f(d_0) is shared between the calculations, this is more efficient than doing multiple applications of ff. And of course, this is then generalized to mm many directional derivatives at once by:

d=d0+v1ϵ1+v2ϵ2+…+vmϵmd = d_0 + v_1 \epsilon_1 + v_2 \epsilon_2 + \ldots + v_m \epsilon_m



8.3.5 Jacobian

For a function f:ℝn→ℝmf: \mathbb{R}^n \to \mathbb{R}^m, we reduce (conceptually, although not necessarily in code) to its component functions fi:ℝn→ℝf_i: \mathbb{R}^n \to \mathbb{R}, where f(x)=(f1(x),f2(x),…,fm(x))f(x) = (f_1(x), f_2(x), \ldots, f_m(x)).

Then

f(x+ϵv)=(f1(x+ϵv),…,fm(x+ϵv))=(f1(x)+ϵ[∇f1(x)⋅v],…,fm(x)+ϵ[∇fm(x)⋅v]=f(x)+[f′(x)⋅v]ϵ,\begin{align}
f(x + \epsilon v) &= (f_1(x + \epsilon v), \ldots, f_m(x + \epsilon v)) \\
&= (f_1(x) + \epsilon[\nabla f_1(x) \cdot v], \dots, f_m(x) + \epsilon[\nabla f_m(x) \cdot v] \\
&= f(x) + [f'(x) \cdot v] \epsilon,
\end{align}

To calculate the complete Jacobian, we calculate these directional derivatives in the nn different directions of the basis vectors, i.e. if

d=d0+e1ϵ1+…+enϵnd = d_0 + e_1 \epsilon_1 + \ldots + e_n \epsilon_n

for eie_i the iith basis vector, then

f(d)=f(d0)+Je1ϵ1+…+Jenϵnf(d) = f(d_0) + Je_1 \epsilon_1 + \ldots + Je_n \epsilon_n

computes all columns of the Jacobian simultaneously.



8.3.6 Array of Structs Representation

Instead of thinking about a vector of dual numbers, thus we can instead think of dual numbers with vectors for the components. But if there are vectors for the components, then we can think of the grouping of dual components as a matrix. Thus define our multidimensional multi-partial dual number as:

D0=[d1,d2,d3,…,dn]D_0 = [d_1,d_2,d_3,\ldots,d_n]

Σ=[d11d12⋯d1nd21d22⋮⋮⋱⋮dm1……dmn]\Sigma = \begin{bmatrix}
        d_{11} & d_{12} & \cdots & d_{1n} \\
        d_{21} & d_{22} &  & \vdots \\
        \vdots & & \ddots & \vdots \\
        d_{m1} & \hdots & \hdots & d_{mn}
    \end{bmatrix}

ϵ=[ϵ1,ϵ2,…,ϵm]\epsilon=[\epsilon_1,\epsilon_2,\ldots,\epsilon_m]

D=D0+ΣϵD = D_0 + \Sigma \epsilon

where D0D_0 is a vector in ℝn\mathbb{R}^n, ϵ\epsilon is a vector of dimensional signifiers and Σ\Sigma is a matrix in ℝn×m\mathbb{R}^{n \times m} where mm is the number of concurrent differentiation dimensions. Each row of this is a dual number, but now we can use this to easily define higher dimensional primitives.

For example, let f(x)=Axf(x) = Ax, matrix multiplication. Then, we can show with our dual number arithmetic that:

f(D)=A*D0+A*Σ*ϵf(D) = A*D_0 + A*\Sigma*\epsilon

is how one would compute the value of f(D0)f(D_0) and the derivative f′(D0)f'(D_0) in all directions signified by the columns of Σ\Sigma simultaneously. Using multidimensional Taylor series expansions and doing the manipulations like before indeed implies that the arithmetic on this object should follow:

f(D)=f(D0)+f′(D0)Σϵf(D) = f(D_0) + f'(D_0)\Sigma \epsilon

where f′f' is the total derivative or the Jacobian of ff. This then allows our system to be highly efficient by allowing the definition of multidimensional functions, like linear algebra, to be primitives of multi-directional derivatives.



8.3.7 Higher derivatives

The above techniques can be extended to higher derivatives by adding more terms to the Taylor polynomial, e.g.

f(a+ϵ)=f(a)+ϵf′(a)+12ϵ2f″(a)+o(ϵ2).f(a + \epsilon) = f(a) + \epsilon f'(a) + \frac{1}{2} \epsilon^2 f''(a) + o(\epsilon^2).

We treat this as a degree-2 (or degree-nn, in general) polynomial and do polynomial arithmetic to calculate the new polynomials. The coefficients of powers of ϵ\epsilon then give the higher-order derivatives.

For example, for a function f:ℝn→ℝf: \mathbb{R}^n \to \mathbb{R} we have

f(x+ϵv)=f(x)+ϵ[∑i(∂if)(x)vi]+12ϵ2[∑i∑j(∂i,jf)vivj]f(x + \epsilon v) = f(x) + \epsilon \left[ \sum_i (\partial_i f)(x) v_i \right] + \frac{1}{2}\epsilon^2 \left[ \sum_i \sum_j (\partial_{i,j} f) v_i v_j \right]

using Dual numbers with a single ϵ\epsilon component. In this way we can compute coefficients of the (symmetric) Hessian matrix.




8.4 Application: solving nonlinear equations using the Newton method

As an application, we will see how to solve nonlinear equations of the form f(x)=0f(x) = 0 for functions f:ℝn→ℝnf: \mathbb{R}^n \to \mathbb{R}^n.

Since in general we cannot do anything with nonlinearity, we try to reduce it (approximate it) with something linear. Furthermore, in general we know that it is not possible to solve nonlinear equations in closed form (even for polynomials of degree ≥5\ge 5), so we will need some kind of iterative method.

We start from an initial guess x0x_0. The idea of the Newton method is to follow the tangent line to the function ff at the point x0x_0 and find where it intersects the xx-axis; this will give the next iterate x1x_1.

Algebraically, we want to solve f(x1)=0f(x_1) = 0. Suppose that x1=x0+δx_1 = x_0 + \delta for some δ\delta that is currently unknown and which we wish to calculate.

Assuming δ\delta is small, we can expand:

f(x1)=f(x0+δ)=f(x0)+Df(x0)⋅δ+𝒪(∥δ∥2).f(x_1) = f(x_0 + \delta) = f(x_0) + Df(x_0) \cdot \delta + \mathcal{O}(\| \delta \|^2).

Since we wish to solve

f(x0+δ)≃0,f(x_0 + \delta) \simeq 0,

we put

f(x0)+Df(x0)⋅δ=0,f(x_0) + Df(x_0) \cdot \delta = 0,

so that mathematically we have

δ=−[Df(x0)]−1⋅f(x0).\delta = -[Df(x_0)]^{-1} \cdot f(x_0).

Computationally we prefer to solve the matrix equation

Jδ=−f(x0),J \delta = -f(x_0),

where J:=Df(x0)J := Df(x_0) is the Jacobian of the function; Julia uses the syntax \ (“backslash”) for solving linear systems in an efficient way:


using ForwardDiff, StaticArrays

function newton_step(f, x0)
    J = ForwardDiff.jacobian(f, x0)
    δ = J \ f(x0)

    return x0 - δ
end

function newton(f, x0)
    x = x0

    for i in 1:10
        x = newton_step(f, x)
        @show x
    end

    return x
end

fsvec2(xx) = ( (x, y) = xx;  SVector(x^2 + y^2 - 1, x - y) )

x0 = SVector(3.0, 5.0)

x = newton(fsvec2, x0)



x = [2.1875, 2.1875]
x = [1.2080357142857143, 1.2080357142857143]
x = [0.8109653811635519, 0.8109653811635519]
x = [0.7137572554482892, 0.7137572554482892]
x = [0.7071377642746832, 0.7071377642746832]
x = [0.7071067818653062, 0.7071067818653062]
x = [0.7071067811865475, 0.7071067811865475]
x = [0.7071067811865476, 0.7071067811865476]
x = [0.7071067811865475, 0.7071067811865475]
x = [0.7071067811865476, 0.7071067811865476]




2-element SVector{2, Float64} with indices SOneTo(2):
 0.7071067811865476
 0.7071067811865476







8.5 Conclusion

To make derivative calculations efficient and correct, we can move to higher dimensional numbers. In multiple dimensions, these then allow for multiple directional derivatives to be computed simultaneously, giving a method for computing the Jacobian of a function ff on a single input. This is a direct application of using the compiler as part of a mathematical framework.
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9 Solving Stiff Ordinary Differential Equations


9.1 Youtube Video Link

We have previously shown how to solve non-stiff ODEs via optimized Runge-Kutta methods, but we ended by showing that there is a fundamental limitation of these methods when attempting to solve stiff ordinary differential equations. However, we can get around these limitations by using different types of methods, like implicit Euler. Let’s now go down the path of understanding how to efficiently implement stiff ordinary differential equation solvers, and its interaction with other domains like automatic differentiation.

When one is solving a large-scale scientific computing problem with MPI, this is almost always the piece of code where all of the time is spent, so let’s understand how what it’s doing.



9.2 Newton’s Method and Jacobians

Recall that the implicit Euler method is the following:

un+1=un+Δtf(un+1,p,t+Δt)u_{n+1} = u_n + \Delta t f(u_{n+1},p,t + \Delta t)

If we wanted to use this method, we would need to find out how to get the value un+1u_{n+1} when only knowing the value unu_n. To do so, we can move everything to one side:

un+1−Δtf(un+1,p,t+Δt)−un=0u_{n+1} - \Delta t f(u_{n+1},p,t + \Delta t) - u_n = 0

and now we have a problem

g(un+1)=0g(u_{n+1}) = 0

This is the classic rootfinding problem g(x)=0g(x)=0, find xx. The way that we solve the rootfinding problem is, once again, by replacing this problem about a continuous function gg with a discrete dynamical system whose steady state is the solution to the g(x)=0g(x)=0. There are many methods for this, but some choices of the rootfinding method effect the stability of the ODE solver itself since we need to make sure that the steady state solution is a stable steady state of the iteration process, otherwise the rootfinding method will diverge (will be explored in the homework).

Thus for example, fixed point iteration is not appropriate for stiff differential equations. Methods which are used in the stiff case are either Anderson Acceleration or Newton’s method. Newton’s is by far the most common (and generally performs the best), so we can go down this route.

Let’s use the syntax g(x)=0g(x)=0. Here we need some starting value x0x_0 as our first guess for un+1u_{n+1}. The easiest guess is unu_{n}, though additional information about the equation can be used to compute a better starting value (known as a step predictor). Once we have a starting value, we run the iteration:

xk+1=xk−J(xk)−1g(xk)x_{k+1} = x_k - J(x_k)^{-1}g(x_k)

where J(xk)J(x_k) is the Jacobian of gg at the point xkx_k. However, the mathematical formulation is never the syntax that you should use for the actual application! Instead, numerically this is two stages:


	Solve Ja=g(xk)Ja=g(x_k) for aa

	Update xk+1=xk−ax_{k+1} = x_k - a



By doing this, we can turn the matrix inversion into a problem of a linear solve and then an update. The reason this is done is manyfold, but one major reason is because the inverse of a sparse matrix can be dense, and this Jacobian is in many cases (PDEs) a large and dense matrix.

Now let’s break this down step by step.


9.2.1 Some Quick Notes

The Jacobian of gg can also be written as J=I−γdfduJ = I - \gamma \frac{df}{du} for the ODE u′=f(u,p,t)u' = f(u,p,t), where γ=Δt\gamma = \Delta t for the implicit Euler method. This general form holds for all other (SDIRK) implicit methods, changing the value of γ\gamma. Additionally, the class of Rosenbrock methods solves a linear system with exactly the same JJ, meaning that essentially all implicit and semi-implicit ODE solvers have to do the same Newton iteration process on the same structure. This is the portion of the code that is generally the bottleneck.

Additionally, if one is solving a mass matrix ODE: Mu′=f(u,p,t)Mu' = f(u,p,t), exactly the same treatment can be had with J=M−γdfduJ = M - \gamma \frac{df}{du}. This works even if MM is singular, a case known as a differential-algebraic equation or a DAE. A DAE for example can be an ODE with constraint equations, and these structures can be represented as an ODE where these constraints lead to a singularity in the mass matrix (a row of all zeros is a term that is only the right hand side equals zero!).




9.3 Generation of the Jacobian


9.3.1 Dense Finite Differences and Forward-Mode AD

Recall that the Jacobian is the matrix of dfidxj\frac{df_i}{dx_j} for ff a vector-valued function. The simplest way to generate the Jacobian is through finite differences. For each hj=hejh_j = h e_j for eje_j the basis vector of the jjth axis and some sufficiently small hh, then we can compute column jj of the Jacobian by:

f(x+hj)−f(x)h\frac{f(x+h_j)-f(x)}{h}

Thus m+1m+1 applications of ff are required to compute the full Jacobian.

This can be improved by using forward-mode automatic differentiation. Recall that we can formulate a multidimensional duel number of the form

d=x+v1ϵ1+…+vmϵmd = x + v_1 \epsilon_1 + \ldots + v_m \epsilon_m

We can then seed the vectors vj=hjv_j = h_j so that the differentiation directions are along the basis vectors, and then the output dual is the result:

f(d)=f(x)+J1ϵ1+…+Jmϵmf(d) = f(x) + J_1 \epsilon_1 + \ldots + J_m \epsilon_m

where JjJ_j is the jjth column of the Jacobian. And thus with one calculation of the primal (f(x)) we have calculated the entire Jacobian.



9.3.2 Sparse Differentiation and Matrix Coloring

However, when the Jacobian is sparse we can compute it much faster. We can understand this by looking at the following system:

f(x)=[x1+x3x2x3x1]f(x)=\left[\begin{array}{c}
x_{1}+x_{3}\\
x_{2}x_{3}\\
x_{1}
\end{array}\right]

Notice that in 3 differencing steps we can calculate:

f(x+ϵe1)=[x1+x3+ϵx2x3x1+ϵ]f(x+\epsilon e_{1})=\left[\begin{array}{c}
x_{1}+x_{3}+\epsilon\\
x_{2}x_{3}\\
x_{1}+\epsilon
\end{array}\right]

f(x+ϵe2)=[x1+x3x2x3+ϵx3x1]f(x+\epsilon e_{2})=\left[\begin{array}{c}
x_{1}+x_{3}\\
x_{2}x_{3}+\epsilon x_{3}\\
x_{1}
\end{array}\right]

f(x+ϵe3)=[x1+x3+ϵx2x3+ϵx2x1]f(x+\epsilon e_{3})=\left[\begin{array}{c}
x_{1}+x_{3}+\epsilon\\
x_{2}x_{3}+\epsilon x_{2}\\
x_{1}
\end{array}\right]

and thus:

f(x+ϵe1)−f(x)ϵ=[101]\frac{f(x+\epsilon e_{1})-f(x)}{\epsilon}=\left[\begin{array}{c}
1\\
0\\
1
\end{array}\right]

f(x+ϵe2)−f(x)ϵ=[0x30]\frac{f(x+\epsilon e_{2})-f(x)}{\epsilon}=\left[\begin{array}{c}
0\\
x_{3}\\
0
\end{array}\right]

f(x+ϵe3)−f(x)ϵ=[1x20]\frac{f(x+\epsilon e_{3})-f(x)}{\epsilon}=\left[\begin{array}{c}
1\\
x_{2}\\
0
\end{array}\right]

But notice that the calculation of e1e_1 and e2e_2 do not interact. If we had done:

f(x+ϵe1+ϵe2)−f(x)ϵ=[1x31]\frac{f(x+\epsilon e_{1}+\epsilon e_{2})-f(x)}{\epsilon}=\left[\begin{array}{c}
1\\
x_{3}\\
1
\end{array}\right]

we would still get the correct value for every row because the ϵ\epsilon terms do not collide (a situation known as perturbation confusion). If we knew the sparsity pattern of the Jacobian included a 0 at (2,1), (1,2), and (3,2), then we would know that the vectors would have to be [101][1 0 1] and [0x30][0 x_3 0], meaning that columns 1 and 2 can be computed simultaneously and decompressed. This is the key to sparse differentiation.



With forward-mode automatic differentiation, recall that we calculate multiple dimensions simultaneously by using a multidimensional dual number seeded by the vectors of the differentiation directions, that is:

d=x+v1ϵ1+…+vmϵmd = x + v_1 \epsilon_1 + \ldots + v_m \epsilon_m

Instead of using the primitive differentiation directions eje_j, we can instead replace this with the mixed values. For example, the Jacobian of the example function can be computed in one function call to ff with the dual number input:

d=x+(e1+e2)ϵ1+e3ϵ2d = x + (e_1 + e_2) \epsilon_1 + e_3 \epsilon_2

and performing the decompression via the sparsity pattern. Thus the sparsity pattern gives a direct way to optimize the construction of the Jacobian.

This idea of independent directions can be formalized as a matrix coloring. Take SijS_{ij} the sparsity pattern of some Jacobian matrix JijJ_{ij}. Define a graph on the nodes 1 through m where there is an edge between ii and jj if there is a row where ii and jj are non-zero. This graph is the column connectivity graph of the Jacobian. What we wish to do is find the smallest set of differentiation directions such that differentiating in the direction of eie_i does not collide with differentiation in the direction of eje_j. The connectivity graph is setup so that way this cannot be done if the two nodes are adjacent. If we let the subset of nodes differentiated together be a color, the question is, what is the smallest number of colors s.t. no adjacent nodes are the same color. This is the classic distance-1 coloring problem from graph theory. It is well-known that the problem of finding the chromatic number, the minimal number of colors for a graph, is generally NP-complete. However, there are heuristic methods for performing a distance-1 coloring quite quickly. For example, a greedy algorithm is as follows:


	Pick a node at random to be color 1.

	Make all nodes adjacent to that be the lowest color that they can be (in this step that will be 2).

	Now look at all nodes adjacent to that. Make all nodes be the lowest color that they can be (either 1 or 3).

	Repeat by looking at the next set of adjacent nodes and color as conservatively as possible.



This can be visualized as follows:



The result will color the entire connected component. While not giving an optimal result, it will still give a result that is a sufficient reduction in the number of differentiation directions (without solving an NP-complete problem) and thus can lead to a large computational saving.

At the end, let cic_i be the vector of 1’s and 0’s, where it’s 1 for every node that is color ii and 0 otherwise. Sparse automatic differentiation of the Jacobian is then computed with:

d=x+c1ϵ1+…+ckϵkd = x + c_1 \epsilon_1 + \ldots + c_k \epsilon_k

that is, the full Jacobian is computed with one dual number which consists of the primal calculation along with kk dual dimensions, where kk is the computed chromatic number of the connectivity graph on the Jacobian. Once this calculation is complete, the colored columns can be decompressed into the full Jacobian using the sparsity information, generating the original quantity that we wanted to compute.

For more information on the graph coloring aspects, find the paper titled “What Color Is Your Jacobian? Graph Coloring for Computing Derivatives” by Gebremedhin.


9.3.2.1 Note on Sparse Reverse-Mode AD

Reverse-mode automatic differentiation can be though of as a method for computing one row of a Jacobian per seed, as opposed to one column per seed given by forward-mode AD. Thus sparse reverse-mode automatic differentiation can be done by looking at the connectivity graph of the column and using the resulting color vectors to seed the reverse accumulation process.





9.4 Linear Solving

After the Jacobian has been computed, we need to solve a linear equation Ja=bJa=b. While mathematically you can solve this by computing the inverse J−1J^{-1}, this is not a good way to perform the calculation because even if JJ is sparse, then J−1J^{-1} is in general dense and thus may not fit into memory (remember, this is N2N^2 as many terms, where NN is the size of the ordinary differential equation that is being solved, so if it’s a large equation it is very feasible and common that the ODE is representable but its full Jacobian is not able to fit into RAM). Note that some may say that this is done for numerical stability reasons: that is incorrect. In fact, under reasonable assumptions for how the inverse is computed, it will be as numerically stable as other techniques we will mention.

Thus instead of generating the inverse, we can instead perform a matrix factorization. A matrix factorization is a transformation of the matrix into a form that is more amenable to certain analyses. For our purposes, a general Jacobian within a Newton iteration can be transformed via the LU-factorization or (LU-decomposition), i.e.

J=LUJ = LU

where LL is lower triangular and UU is upper triangular. If we write the linear equation in this form:

LUa=bLUa = b

then we see that we can solve it by first solving L(Ua)=bL(Ua) = b. Since LL is lower triangular, this is done by the backsubstitution algorithm. That is, in a lower triangular form, we can solve for the first value since we have:

L11a1=b1L_{11} a_1 = b_1

and thus by dividing we solve. For the next term, we have that

L21a1+L22a2=b2L_{21} a_1 + L_{22} a_2 = b_2

and thus we plug in the solution to a1a_1 and solve to get a2a_2. The lower triangular form allows this to continue. This occurs in 1+2+3+…+n operations, and is thus O(n^2). Next, we solve Ua=bUa = b, which once again is done by a backsubstitution algorithm but in the reverse direction. Together those two operations are O(n^2) and complete the inversion of LULU.

So is this an O(n^2) algorithm for computing the solution of a linear system? No, because the computation of LULU itself is an O(n^3) calculation, and thus the true complexity of solving a linear system is still O(n^3). However, if we have already factorized JJ, then we can repeatedly use the same LULU factors to solve additional linear problems Jv=uJv = u with different vectors. We can exploit this to accelerate the Newton method. Instead of doing the calculation:

xk+1=xk−J(xk)−1g(xk)x_{k+1} = x_k - J(x_k)^{-1}g(x_k)

we can instead do:

xk+1=xk−J(x0)−1g(xk)x_{k+1} = x_k - J(x_0)^{-1}g(x_k)

so that all of the Jacobians are the same. This means that a single O(n^3) factorization can be done, with multiple O(n^2) calculations using the same factorization. This is known as a Quasi-Newton method. While this makes the Newton method no longer quadratically convergent, it minimizes the large constant factor on the computational cost while retaining the same dynamical properties, i.e. the same steady state and thus the same overall solution. This makes sense for sufficiently large nn, but requires sufficiently large nn because the loss of quadratic convergence means that it will take more steps to converge than before, and thus more O(n2)O(n^2) backsolves are required, meaning that the difference between factorizations and backsolves needs to be large enough in order to offset the cost of extra steps.


9.4.0.1 Note on Sparse Factorization

Note that LU-factorization, and other factorizations, have generalizations to sparse matrices where a symbolic factorization is utilized to compute a sparse storage of the values which then allow for a fast backsubstitution. More details are outside the scope of this course, but note that Julia and MATLAB will both use the library SuiteSparse in the background when lu is called on a sparse matrix.




9.5 Jacobian-Free Newton Krylov (JFNK)

An alternative method for solving the linear system is the Jacobian-Free Newton Krylov technique. This technique is broken into two pieces: the jvp calculation and the Krylov subspace iterative linear solver.


9.5.1 Jacobian-Vector Products as Directional Derivatives

We don’t actually need to compute JJ itself, since all that we actually need is the v = J*w. Is it possible to compute the Jacobian-Vector Product, or the jvp, without producing the Jacobian?

To see how this is done let’s take a look at what is actually calculated. Written out in the standard basis, we have that:

wi=∑jmJijvjw_i = \sum_{j}^{m} J_{ij} v_{j}

Now write out what JJ means and we see that:

wi=∑jmdfidxjvj=∇fi(x)⋅vw_i = \sum_j^{m} \frac{df_i}{dx_j} v_j = \nabla f_i(x) \cdot v

that is, the iith component of JvJv is the directional derivative of fif_i in the direction vv. This means that in general, the jvp JvJv is actually just the directional derivative in the direction of vv, that is:

Jv=∇f⋅vJv = \nabla f \cdot v

and therefore it has another mathematical representation, that is:

Jv=limϵ→0f(x+vϵ)−f(x)ϵJv = \lim_{\epsilon \rightarrow 0} \frac{f(x+v \epsilon) - f(x)}{\epsilon}

From this alternative form it is clear that we can always compute a jvp with a single computation. Using finite differences, a simple approximation is the following:

Jv≈f(x+vϵ)−f(x)ϵJv \approx \frac{f(x+v \epsilon) - f(x)}{\epsilon}

for non-zero ϵ\epsilon. Similarly, recall that in forward-mode automatic differentiation we can choose directions by seeding the dual part. Therefore, using the dual number with one partial component:

d=x+vϵd = x + v \epsilon

we get that

f(d)=f(x)+Jvϵf(d) = f(x) + Jv \epsilon

and thus a single application with a single partial gives the jvp.


9.5.1.1 Note on Reverse-Mode Automatic Differentiation

As noted earlier, reverse-mode automatic differentiation has its primitives compute rows of the Jacobian in the seeded direction. This means that the seeded reverse-mode call with the vector vv computes vTJv^T J, that is the vector (transpose) Jacobian transpose, or vjp for short. When discussing parameter estimation and adjoints, this shorthand will be introduced as a way for using a traditionally machine learning tool to accelerate traditionally scientific computing tasks.




9.5.2 Krylov Subspace Methods For Solving Linear Systems


9.5.2.1 Basic Iterative Solver Methods

Now that we have direct access to quick calculations of JvJv, how would we use this to solve the linear system Jw=vJw = v quickly? This is done through iterative linear solvers. These methods replace the process of solving for a factorization with, you may have guessed it, a discrete dynamical system whose solution is ww. To do this, what we want is some iterative process so that

Jw−b=0Jw - b = 0

So now let’s split J=A−BJ = A - B, then if we are iterating the vectors wkw_k such that wk→ww_k \rightarrow w, then if we plug this into the previous (residual) equation we get

Awk+1=Bwk+bA w_{k+1} = Bw_k + b

since when we plug in ww we get zero (the sequence must be Cauchy so the difference wk+1−wk→0w_{k+1} - w_k \rightarrow 0). Thus if we can split our matrix JJ into a component AA which is easy to invert and a part BB that is just everything else, then we would have a bunch of easy linear systems to solve. There are many different choices that we can do. If we let J=L+D+UJ = L + D + U, where LL is the lower portion of JJ, DD is the diagonal, and UU is the upper portion, then the following are well-known methods:


	Richardson: A=ωIA = \omega I for some ω\omega

	Jacobi: A=DA = D

	Damped Jacobi: A=ωDA = \omega D

	Gauss-Seidel: A=D−LA = D-L

	Successive Over Relaxation: A=ωD−LA = \omega D - L

	Symmetric Successive Over Relaxation: A=1ω(2−ω)(D−ωL)D−1(D−ωU)A = \frac{1}{\omega (2 - \omega)}(D-\omega L)D^{-1}(D-\omega U)



These decompositions are chosen since a diagonal matrix is easy to invert (it’s just the inversion of the scalars of the diagonal) and it’s easy to solve an upper or lower triangular linear system (once again, it’s backsubstitution).

Since these methods give a a linear dynamical system, we know that there is a unique steady state solution, which happens to be Aw−Bw=Jw=bAw - Bw = Jw = b. Thus we will converge to it as long as the steady state is stable. To see if it’s stable, take the update equation

wk+1=A−1(Bwk+b)w_{k+1} = A^{-1}(Bw_k + b)

and check the eigenvalues of the system: if they are within the unit circle then you have stability. Notice that this can always occur by bringing the eigenvalues of A−1A^{-1} closer to zero, which can be done by multiplying AA by a significantly large value, hence the ω\omega quantities. While that always works, this essentially amounts to decreasing the stepsize of the iterative process and thus requiring more steps, thus making it take more computations. Thus the game is to pick the largest stepsize (ω\omega) for which the steady state is stable. We will leave that as outside the topic of this course.



9.5.2.2 Krylov Subspace Methods

While the classical iterative solver methods give the background for understanding an alternative to direct inversion or factorization of a matrix, the problem with that approach is that it requires the ability to split the matrix JJ, which we would like to avoid computing. Instead, we would like to develop an iterative solver technique which instead just uses the solution to JvJv. Indeed there are such methods, and these are the Krylov subspace methods. A Krylov subspace is the space spanned by:

𝒦k=span{v,Jv,J2v,…,Jkv}\mathcal{K}_k = \text{span} \{v,Jv,J^2 v, \ldots, J^k v\}

There are a few nice properties about Krylov subspaces that can be exploited. For one, it is known that there is a finite maximum dimension of the Krylov subspace, that is there is a value rr such that Jr+1v∈𝒦rJ^{r+1} v \in \mathcal{K}_r, which means that the complete Krylov subspace can be computed in finitely many jvp, since J2vJ^2 v is just the jvp where the vector is the jvp. Indeed, one can show that JivJ^i v is linearly independent for each ii, and thus that maximal value is mm, the dimension of the Jacobian. Therefore in mm jvps the solution is guaranteed to live in the Krylov subspace, giving a maximal computational cost and a proof of convergence if the vector in there is the “optimal in the space”.

The most common method in the Krylov subspace family of methods is the GMRES method. Essentially, in step ii one computes 𝒦i\mathcal{K}_i, and finds the xx that is the closest to the Krylov subspace, i.e. finds the x∈𝒦ix \in \mathcal{K}_i such that ‖Jx−v‖\Vert Jx-v \Vert is minimized. At each step, it adds the new vector to the Krylov subspace after orthgonalizing it against the other vectors via Arnoldi iterations, leading to an orthogonal basis of 𝒦i\mathcal{K}_i which makes it easy to express xx.

While one has a guaranteed bound on the number of possible jvps in GMRES which is simply the number of ODEs (since that is what determines the size of the Jacobian and thus the total dimension of the problem), that bound is not necessarily a good one. For a large sparse matrix, it may be computationally impractical to ever compute 100,000 jvps. Thus one does not typically run the algorithm to conclusion, and instead stops when ‖Jx−v‖\Vert Jx-v \Vert is sufficiently below some user-defined error tolerance.





9.6 Intermediate Conclusion

Let’s take a step back and see what our intermediate conclusion is. In order to solve for the implicit step, it just boils down to doing Newton’s method on some g(x)=0g(x)=0. If the Jacobian is small enough, one factorizes the Jacobian and uses Quasi-Newton iterations in order to utilize the stored LU-decomposition in multiple steps to reduce the computation cost. If the Jacobian is sparse, sparse automatic differentiation through matrix coloring is employed to directly fill the sparse matrix with less applications of gg, and then this sparse matrix is factorized using a sparse LU factorization.

When the matrix is too large, then one resorts to using a Krylov subspace method, since this only requires being able to do JvJv calculations. In general, JvJv can be done matrix-free because it is simply the directional derivative in the direction of the vector vv, which can be computed through either numerical or forward-mode automatic differentiation. This is then used in the GMRES iterative process to find the solution in the Krylov subspace which is closest to the solution, exiting early when the residual error is small enough. If this is converging too slow, then preconditioning is used.

That’s the basic algorithm, but what are the other important details for getting this right?



9.7 The Need for Speed


9.7.1 Preconditioning

However, the speed at GMRES convergences is dependent on the correlations between the vectors, which can be shown to be related to the condition number of the Jacobian matrix. A high condition number makes convergence slower (this is the case for the traditional iterative methods as well), which in turn is an issue because it is the high condition number on the Jacobian which leads to stiffness and causes one to have to use an implicit integrator in the first place!

To help speed up the convergence, a common technique is known as preconditioning. Preconditioning is the process of using a semi-inverse to the matrix in order to split the matrix so that the iterative problem that is being solved is one that has a smaller condition number. Mathematically, it involves decomposing J=PlAPrJ = P_l A P_r where PlP_l and PrP_r are the left and right preconditioners which have simple inverses, and thus instead of solving Jx=vJx=v, we would solve:

PlAPrx=vP_l A P_r x = v

or

APrx=Pl−1vA P_r x = P_l^{-1}v

which then means that the Krylov subpace that needs to be solved for is that defined by AA: 𝒦=span{v,Av,A2v,…}\mathcal{K} = \text{span}\{v,Av,A^2 v, \ldots\}. There are many possible choices for these preconditioners, but they are usually problem dependent. For example, for ODEs which come from parabolic and elliptic PDE discretizations, the multigrid method, such as a geometric multigrid or an algebraic multigrid, is a preconditioner that can accelerate the iterative solving process. One generic preconditioner that can generally be used is to divide by the norm of the vector vv, which is a scaling employed by both SUNDIALS CVODE and by DifferentialEquations.jl and can be shown to be almost always advantageous.



9.7.2 Jacobian Re-use

If the problem is small enough such that the factorization is used and a Quasi-Newton technique is employed, it then holds that for most steps JJ is only approximate since it can be using an old LU-factorization. To push it even further, high performance codes allow for jacobian reuse, which is allowing the same Jacobian to be reused between different timesteps. If the Jacobian is too incorrect, it can cause the Newton iterations to diverge, which is then when one would calculate a new Jacobian and compute a new LU-factorization.



9.7.3 Adaptive Timestepping

In simple cases, like partial differential equation discretizations of physical problems, the resulting ODEs are not too stiff and thus Newton’s iteration generally works. However, in cases like stiff biological models, Newton’s iteration can itself not always be stable enough to allow convergence. In fact, with many of the stiff biological models commonly used in benchmarks, no method is stable enough to pass without using adaptive timestepping! Thus one may need to adapt the timestep in order to improve the ability for the Newton method to converge (smaller timesteps increase the stability of the Newton stepping, see the homework).

This needs to be mixed with the Jacobian re-use strategy, since J=I−γdfduJ = I - \gamma \frac{df}{du} where γ\gamma is dependent on Δt\Delta t (and γ=Δt\gamma = \Delta t for implicit Euler) means that the Jacobian of the Newton method changes as Δt\Delta t changes. Thus one usually has a tiered algorithm for determining when to update the factorizations of JJ vs when to compute a new dfdu\frac{df}{du} and then refactorize. This is generally dependent on estimates of convergence rates to heuristically guess how far off dfdu\frac{df}{du} is from the current true value.

So how does one perform adaptivity? This is generally done through a rejection sampling technique. First one needs some estimate of the error in a step. This is calculated through an embedded method, which is a method that is able to be calculated without any extra ff evaluations that is (usually) one order different from the true method. The difference between the true and the embedded method is then an error estimate. If this is greater than a user chosen tolerance, the step is rejected and re-ran with a smaller Δt\Delta t (possibly refactorizing, etc.). If this is less than the user tolerance, the step is accepted and Δt\Delta t is changed.

There are many schemes for how one can change Δt\Delta t. One of the most common is known as the P-control, which stands for the proportional controller which is used throughout control theory. In this case, the control is to change Δt\Delta t in proportion to the current error ratio from the desired tolerance. If we let

q=Emax(uk,uk+1)τr+τaq = \frac{\text{E}}{\max(u_k,u_{k+1}) \tau_r + \tau_a}

where τr\tau_r is the relative tolerance and τa\tau_a is the absolute tolerance, then qq is the ratio of the current error to the current tolerance. If q<1q<1, then the error is less than the tolerance and the step is accepted, and vice versa for q>1q>1. In either case, we let Δtnew=qΔt\Delta t_{new} = q \Delta t be the proportional update.

However, proportional error control has many known features that are undesirable. For example, it happens to work in a “bang bang” manner, meaning that it can drastically change its behavior from step to step. One step may multiply the step size by 10x, then the next by 2x. This is an issue because it effects the stability of the ODE solver method (since the stability is not a property of a single step, but rather it’s a property of the global behavior over time)! Thus to smooth it out, one can use a PI-control, which modifies the control factor by a history value, i.e. the error in one step in the past. This of course also means that one can utilize a PID-controller for time stepping. And there are many other techniques that can be used, but many of the most optimized codes tend to use a PI-control mechanism.




9.8 Methodological Summary

Here’s a quick summary of the methodologies in a hierarchical sense:


	At the lowest level is the linear solve, either done by JFNK or (sparse) factorization. For large enough systems, this is the brunt of the work. This is thus the piece to computationally optimize as much as possible, and parallelize. For sparse factorizations, this can be done with a distributed sparse library implementation. For JFNK, the efficiency is simply due to the efficiency of your ODE function f.

	An optional level for JFNK is the preconditioning level, where preconditioners can be used to decrease the total number of iterations required for Krylov subspace methods like GMRES to converge, and thus reduce the total number of f calls.

	At the nonlinear solver level, different Newton-like techniques are utilized to minimize the number of factorizations/linear solves required, and maximize the stability of the Newton method.

	At the ODE solver level, more efficient integrators and adaptive methods for stiff ODEs are used to reduce the cost by affecting the linear solves. Most of these calculations are dominated by the linear solve portion when it’s in the regime of large stiff systems. Jacobian reuse techniques, partial factorizations, and IMEX methods come into play as ways to reduce the cost per factorization and reduce the total number of factorizations.








  
  
  ch011.xhtml
  
  

  
  
  

  

  




10 Basic Parameter Estimation, Reverse-Mode AD, and Inverse Problems


10.1 Youtube Video Link

Have a model. Have data. Fit model to data.

This is a problem that goes under many different names: parameter estimation, inverse problems, training, etc. In this lecture we will go through the methods for how that’s done, starting with the basics and bringing in the recent techniques from machine learning that can be used to improve the basic implementations.



10.2 The Shooting Method for Parameter Fitting

Assume that we have some model u=f(p)u = f(p) where pp is our parameters, where we put in some parameters and receive our simulated data uu. How should you choose pp such that uu best fits that data? The shooting method directly uses this high level definition of the model by putting a cost function on the output C(p)C(p). This cost function is dependent on a user-choice and it’s model-dependent. However, a common one is the L2-loss. If yy is our expected data, then the L2-loss function against the data is simply:

C(p)=‖f(p)−y‖C(p) = \Vert f(p) - y \Vert

where C(p):ℝn→ℝC(p): \mathbb{R}^n \rightarrow \mathbb{R} is a function that returns a scalar. The shooting method then directly optimizes this cost function by having the optimizer generate a data given new choices of pp.


10.2.1 Methods for Optimization

There are many different nonlinear optimization methods which can be used for this purpose, and for a full survey one should look at packages like JuMP, Optim.jl, and NLopt.jl.

There are generally two sets of methods: global and local optimization methods. Local optimization methods attempt to find the best nearby extrema by finding a point where the gradient dCdp=0\frac{dC}{dp} = 0. Global optimization methods attempt to explore the whole space and find the best of the extrema. Global methods tend to employ a lot more heuristics and are extremely computationally difficult, and thus many studies focus on local optimization. We will focus strictly on local optimization, but one may want to look into global optimization for many applications of parameter estimation.

Most local optimizers make use of derivative information in order to accelerate the solver. The simplest of which is the method of gradient descent. In this method, given a set of parameters pip_i, the next step of parameters one will try is:

pi+1=pi−αdCdPp_{i+1} = p_i - \alpha \frac{dC}{dP}

that is, update pip_i by walking in the downward direction of the gradient. Instead of using just first order information, one may want to directly solve the rootfinding problem dCdp=0\frac{dC}{dp} = 0 using Newton’s method. Newton’s method in this case looks like:

pi+1=pi−(ddpdCdp)−1dCdpp_{i+1} = p_i - (\frac{d}{dp}\frac{dC}{dp})^{-1} \frac{dC}{dp}

But notice that the Jacobian of the gradient is the Hessian, and thus we can rewrite this as:

pi+1=pi−H(pi)−1dC(pi)dpp_{i+1} = p_i - H(p_i)^{-1} \frac{dC(p_i)}{dp}

where H(p)H(p) is the Hessian matrix Hij=dCdxidxjH_{ij} = \frac{dC}{dx_i dx_j}. However, solving a system of equations which involves the Hessian can be difficult (just like the Jacobian, but now with another layer of differentiation!), and thus many optimization techniques attempt to avoid the Hessian. A commonly used technique that is somewhat in the middle is the BFGS technique, which is a gradient-based optimization method that attempts to approximate the Hessian along the way to modify its stepping behavior. It uses the history of previously calculated points in order to build this quick Hessian approximate. If one keeps only a constant length history, say 5 time points, then one arrives at the l-BFGS technique, which is one of the most common large-scale optimization techniques.



10.2.2 Connection Between Optimization and Differential Equations

There is actually a strong connection between optimization and differential equations. Let’s say we wanted to follow the gradient of the solution towards a local minimum. That would mean that the flow that we would wish to follow is given by an ODE, specifically the ODE:

p′=−dCdpp' = -\frac{dC}{dp}

If we apply the Euler method to this ODE, then we receive

pn+1=pn−αdC(pn)dpp_{n+1} = p_n - \alpha \frac{dC(p_n)}{dp}

and we thus recover the gradient descent method. Now assume that you want to use implicit Euler. Then we would have the system

pn+1=pn−αdC(pn+1)dpp_{n+1} = p_n - \alpha \frac{dC(p_{n+1})}{dp}

which we would then move to one side:

pn+1−pn+αdC(pn+1)dp=0p_{n+1} - p_n + \alpha \frac{dC(p_{n+1})}{dp} = 0

and solve each step via a Newton method. For this Newton method, we need to take the Jacobian of this gradient function, and once again the Hessian arrives as the fundamental quantity.



10.2.3 Neural Network Training as a Shooting Method for Functions

A one layer dense neuron is traditionally written as the function:

layer(x)=σ.(Wx+b)layer(x) = \sigma.(Wx + b)

where x∈ℝnx \in \mathbb{R}^n, W∈ℝm×nW \in \mathbb{R}^{m \times n}, b∈ℝmb \in \mathbb{R}^{m} and σ\sigma is some choice of ℝ→ℝ\mathbb{R}\rightarrow\mathbb{R} nonlinear function, where the . is the Julia dot to signify element-wise operation.

A traditional neural network, feed-forward network, or multi-layer perceptron is a 3 layer function, i.e.

NN(x)=W3σ2.(W2σ1.(W1x+b1)+b2)+b3NN(x) = W_3 \sigma_2.(W_2\sigma_1.(W_1x + b_1) + b_2) + b_3

where the first layer is called the input layer, the second is called the hidden layer, and the final is called the output layer. This specific function was seen as desirable because of the Universal Approximation Theorem, which is formally stated as follows:

Let σ\sigma be a nonconstant, bounded, and continuous function. Let Im=[0,1]mI_m = [0,1]^m. The space of real-valued continuous functions on ImI_m is denoted by C(Im)C(I_m). For any ϵ>0\epsilon >0 and any f∈C(Im)f\in C(I_m), there exists an integer NN, real constants WiW_i and bib_i s.t.

‖NN(x)−f(x)‖<ϵ\Vert NN(x) - f(x) \Vert < \epsilon

for all x∈Imx \in I_m. Equivalently, NNNN given parameters is dense in C(Im)C(I_m).

However, it turns out that using only one hidden layer can require exponential growth in the size of said hidden layer, where the size is given by the number of columns in W1W_1. To counteract this, deep neural networks were developed to be in the form of the recurrence relation:

vi+1=σi.(Wivi+bi)v_{i+1} = \sigma_i.(W_i v_{i} + b_i) v1=xv_1 = x DNN(x)=vnDNN(x) = v_{n}

for some nn where nn is the number of layers. Given a sufficient size of the hidden layers, this kind of function is a universal approximator (2017). Although it’s not quite known yet, some results have shown that this kind of function is able to fit high dimensional functions without the curse of dimensionality, i.e. the number of parameters does not grow exponentially with the input size. More mathematical results in this direction are still being investigated.

However, this theory gives a direct way to transform the fitting of an arbitrary function into a parameter shooting problem. Given an unknown function ff one wishes to fit, one can place the cost function

C(p)=‖DNN(x;p)−f(x)‖C(p) = \Vert DNN(x;p) - f(x) \Vert

where DNN(x;p)DNN(x;p) signifies the deep neural network given by the parameters pp, where the full set of parameters is the WiW_i and bib_i. To make the evaluation of that function be practical, we can instead say we wish to evaluate the difference at finitely many points:

C(p)=∑kN‖DNN(xk;p)−f(xk)‖C(p) = \sum_k^N \Vert DNN(x_k;p) - f(x_k) \Vert

Training a neural network is machine learning speak for finding the pp which minimizes this cost function. Notice that this is then a shooting method problem, where a cost function is defined by direct evaluations of the model with some choice of parameters.



10.2.4 Recurrent Neural Networks

Recurrent neural networks are networks which are given by the recurrence relation:

xk+1=xk+DNN(xk,k;p)x_{k+1} = x_k + DNN(x_k,k;p)

Given our machinery, we can see this is equivalent to the Euler discretization with Δt=1\Delta t = 1 on the neural ordinary differential equation defined by:

x′=DNN(x,t;p)x' = DNN(x,t;p)

Thus a recurrent neural network is a sequence of applications of a neural network (or possibly a neural network indexed by integer time).




10.3 Computing Gradients

This shows that many different problems, from training neural networks to fitting differential equations, all have the same underlying mathematical structure which requires the ability to compute the gradient of a cost function given model evaluations. However, this simply reduces to computing the gradient of the model’s output given the parameters. To see this, let’s take for example the L2 loss function, i.e.

C(p)=∑iN‖f(xi;p)−yi‖C(p) = \sum_i^N \Vert f(x_i;p) - y_i \Vert

for some finite data points yiy_i. In the ODE model, yiy_i are time series points. In the general neural network, yi=d(xi)y_i = d(x_i) for the function we wish to fit dd. In data science applications of machine learning, yi=diy_i = d_i the discrete data points we wish to fit. In any of these cases, we see that by the chain rule we have

dCdp=∑iN2(f(xi;p)−yi)df(xi)dp\frac{dC}{dp} = \sum_i^N 2 \left(f(x_i;p) - y_i \right) \frac{df(x_i)}{dp}

and therefore, knowing how to efficiently compute df(xi)dp\frac{df(x_i)}{dp} is the essential question for shooting-based parameter fitting.


10.3.1 Forward-Mode Automatic Differentiation for Gradients

Let’s recall the forward-mode method for computing gradients. For an arbitrary nonlinear function ff with scalar output, we can compute derivatives by putting a dual number in. For example, with

d=d0+v1ϵ1+…+vmϵmd = d_0 + v_1 \epsilon_1 + \ldots + v_m \epsilon_m

we have that

f(d)=f(d0)+f′(d0)v1ϵ1+…+f′(d0)vmϵmf(d) = f(d_0) + f'(d_0)v_1 \epsilon_1 + \ldots + f'(d_0)v_m \epsilon_m

where f′(d0)vif'(d_0)v_i is the direction derivative in the direction of viv_i. To compute the gradient with respond to the input, we thus need to make vi=eiv_i = e_i.

However, in this case we now do not want to compute the derivative with respect to the input! Instead, now we have f(x;p)f(x;p) and want to compute the derivatives with respect to pp. This simply means that we want to take derivatives in the directions of the parameters. To do this, let:

x=x0+0ϵ1+…+0ϵkx = x_0 + 0 \epsilon_1 + \ldots + 0 \epsilon_k P=p+e1ϵ1+…+ekϵkP = p + e_1 \epsilon_1 + \ldots + e_k \epsilon_k

where there are kk parameters. We then have that

f(x;P)=f(x;p)+dfdp1ϵ1+…+dfdpkϵkf(x;P) = f(x;p) + \frac{df}{dp_1} \epsilon_1 + \ldots + \frac{df}{dp_k} \epsilon_k

as the output, and thus a k+1k+1-dimensional number computes the gradient of the function with respect to kk parameters.

Can we do better?



10.3.2 The Adjoint Technique and Reverse Accumulation

The fast method for computing gradients goes under many times. The adjoint technique, backpropagation, and reverse-mode automatic differentiation are in some sense all equivalent phrases given to this method from different disciplines. To understand the adjoint technique, we will look at the multivariate chain rule on a computation graph. Recall that for f(x(t),y(t))f(x(t),y(t)) that we have:

dfdt=dfdxdxdt+dfdydydt\frac{df}{dt} = \frac{df}{dx}\frac{dx}{dt} + \frac{df}{dy}\frac{dy}{dt}

We can visualize our direct dependences as the computation graph:



i.e. tt directly determines xx and yy which then determines ff. To calculate Assume you’ve already evaluated f(t)f(t). If this has been done, then you’ve already had to calculate xx and yy. Thus given the function ff, we can now calculate dfdx\frac{df}{dx} and dfdy\frac{df}{dy}, and then calculate dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}.

Now let’s put another layer in the computation. Let’s make f(x(v(t),w(t)),y(v(t),w(t))f(x(v(t),w(t)),y(v(t),w(t)). We can write out the full expression for the derivative. Notice that even with this additional layer, the statement we wrote above still holds:

dfdt=dfdxdxdt+dfdydydt\frac{df}{dt} = \frac{df}{dx}\frac{dx}{dt} + \frac{df}{dy}\frac{dy}{dt}

So given an evaluation of ff, we can (still) directly calculate dfdx\frac{df}{dx} and dfdy\frac{df}{dy}. But now, to calculate dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}, we do the next step of the chain rule:

dxdt=dxdvdvdt+dxdwdwdt\frac{dx}{dt} = \frac{dx}{dv}\frac{dv}{dt} + \frac{dx}{dw}\frac{dw}{dt}

and similar for yy. So plug it all in, and you see that our equations will grow wild if we actually try to plug it in! But it’s clear that, to calculate dfdt\frac{df}{dt}, we can first calculate dfdx\frac{df}{dx}, and then multiply that to dxdt\frac{dx}{dt}. If we had more layers, we could calculate the sensitivity (the derivative) of the output to the last layer, then and then the sensitivity to the second layer back is the sensitivity of the last layer multiplied to that, and the third layer back has the sensitivity of the second layer multiplied to it!



10.3.3 Logistic Regression Example

To better see this structure, let’s write out a simple example. Let our forward pass through our function be:

z=wx+by=σ(z)ℒ=12(y−t)2ℛ=12w2ℒreg=ℒ+λℛ\begin{align}
z &= wx + b\\
y &= \sigma(z)\\
\mathcal{L} &= \frac{1}{2}(y-t)^2\\
\mathcal{R} &= \frac{1}{2}w^2\\
\mathcal{L}_{reg} &= \mathcal{L} + \lambda \mathcal{R}\end{align}



The formulation of the program here is called a Wengert list, tape, or graph. In this, xx and tt are inputs, bb and WW are parameters, zz, yy, ℒ\mathcal{L}, and ℛ\mathcal{R} are intermediates, and ℒreg\mathcal{L}_{reg} is our output.

This is a simple univariate logistic regression model. To do logistic regression, we wish to find the parameters ww and bb which minimize the distance of ℒreg\mathcal{L}_{reg} from a desired output, which is done by computing derivatives.

Let’s calculate the derivatives with respect to each quantity in reverse order. If our program is f(x)=ℒregf(x) = \mathcal{L}_{reg}, then we have that

dfdℒreg=1\frac{df}{d\mathcal{L}_{reg}} = 1

as the derivatives of the last layer. To computerize our notation, let’s write

ℒreg¯=dfdℒreg\overline{\mathcal{L}_{reg}} = \frac{df}{d\mathcal{L}_{reg}}

for our computed values. For the derivatives of the second to last layer, we have that:

ℛ¯=dfdℒregdℒregdℛ=ℒreg¯λ\begin{align}
  \overline{\mathcal{R}} &= \frac{df}{d\mathcal{L}_{reg}} \frac{d\mathcal{L}_{reg}}{d\mathcal{R}}\\
                         &= \overline{\mathcal{L}_{reg}} \lambda \end{align}

ℒ¯=dfdℒregdℒregdℒ=ℒreg¯\begin{align}
 \overline{\mathcal{L}} &= \frac{df}{d\mathcal{L}_{reg}} \frac{d\mathcal{L}_{reg}}{d\mathcal{L}}\\
                        &= \overline{\mathcal{L}_{reg}} \end{align}

This was our observation from before that the derivative of the second layer is the partial derivative of the current values times the sensitivity of the final layer. And then we keep multiplying, so now for our next layer we have that:

y¯=ℒ¯dℒdy=ℒ¯(y−t)\begin{align}
  \overline{y} &= \overline{\mathcal{L}} \frac{d\mathcal{L}}{dy}\\
               &= \overline{\mathcal{L}} (y-t) \end{align}

And notice that the chain rule holds since ℒ¯\overline{\mathcal{L}} implicitly already has the multiplication by ℒreg¯\overline{\mathcal{L}_{reg}} inside of it. Then the next layer is:

dfz=y¯dydz=y¯σ′(z)\begin{align}
 \frac{df}{z} &= \overline{y} \frac{dy}{dz}\\
              &= \overline{y} \sigma^\prime(z) \end{align}

Then the next layer. Notice that here, by the chain rule on ww we have that:

w¯=z¯∂z∂w+ℛ¯dℛdw=z¯x+ℛ¯w\begin{align}
  \overline{w} &= \overline{z} \frac{\partial z}{\partial w} + \overline{\mathcal{R}} \frac{d \mathcal{R}}{dw}\\
               &= \overline{z} x + \overline{\mathcal{R}} w\end{align}

b¯=z¯∂z∂b=z¯\begin{align}
 \overline{b} &= \overline{z} \frac{\partial z}{\partial b}\\
              &= \overline{z} \end{align}

This completely calculates all derivatives. In conclusion, the rule is:


	You sum terms from each outward arrow

	Each arrow has the derivative term of the end times the partial of the current term.

	Recurse backwards to build simple linear combination expressions.



You can thus think of the relations as a message passing relation in reverse to the forward pass:



Note that the reverse-pass has the values of the forward pass, like xx and tt, embedded within it.



10.3.4 Backpropagation of a Neural Network

Now let’s look at backpropagation of a deep neural network. Before getting to it in the linear algebraic sense, let’s write everything in terms of scalars. This means we can write a simple neural network as:

zi=∑jWij1xj+bi1hi=σ(zi)yi=∑jWij2hj+bi2ℒ=12∑k(yk−tk)2\begin{align}
  z_i &= \sum_j W_{ij}^1 x_j + b_i^1\\
  h_i &= \sigma(z_i)\\
  y_i &= \sum_j W_{ij}^2 h_j + b_i^2\\
  \mathcal{L} &= \frac{1}{2} \sum_k \left(y_k - t_k \right)^2 \end{align}

where I have chosen the L2 loss function. This is visualized by the computational graph:



Then we can do the same process as before to get:

ℒ¯=1yi¯=ℒ¯(yi−ti)wij2¯=yi¯hjbi2¯=yi¯hi¯=∑k(yk¯wki2)zi¯=hi¯σ′(zi)wij1¯=zi¯xjbi1¯=zi¯\begin{align}
  \overline{\mathcal{L}} &= 1\\
  \overline{y_i} &= \overline{\mathcal{L}} (y_i - t_i)\\
  \overline{w_{ij}^2} &= \overline{y_i} h_j\\
  \overline{b_i^2} &= \overline{y_i}\\
  \overline{h_i} &= \sum_k (\overline{y_k}w_{ki}^2)\\
  \overline{z_i} &= \overline{h_i}\sigma^\prime(z_i)\\
  \overline{w_{ij}^1} &= \overline{z_i} x_j\\
  \overline{b_i^1} &= \overline{z_i}\end{align}

just by examining the computation graph. Now let’s write this in linear algebraic form.



The forward pass for this simple neural network was:

z=W1x+b1h=σ(z)y=W2h+b2ℒ=12‖y−t‖2\begin{align}
  z &= W_1 x + b_1\\
  h &= \sigma(z)\\
  y &= W_2 h + b_2\\
  \mathcal{L} = \frac{1}{2} \Vert y-t \Vert^2 \end{align}

If we carefully decode our scalar expression, we see that we get the following:

ℒ¯=1y¯=ℒ¯(y−t)W2¯=y¯hTb2¯=y¯h¯=W2Ty¯z¯=h¯.*σ′(z)W1¯=z¯xTb1¯=z¯\begin{align}
  \overline{\mathcal{L}} &= 1\\
  \overline{y} &= \overline{\mathcal{L}}(y-t)\\
  \overline{W_2} &= \overline{y}h^{T}\\
  \overline{b_2} &= \overline{y}\\
  \overline{h} &= W_2^T \overline{y}\\
  \overline{z} &= \overline{h} .* \sigma^\prime(z)\\
  \overline{W_1} &= \overline{z} x^T\\
  \overline{b_1} &= \overline{z} \end{align}

We can thus decode the rules as:


	Multiplying by the matrix going forwards means multiplying by the transpose going backwards. A term on the left stays on the left, and a term on the right stays on the right.

	Element-wise operations give element-wise multiplication



Notice that the summation is then easily encoded into this rule by the transpose operation.

We can write it in the general DNN form of:

ri=Wivi+bir_i = W_i v_{i} + b_i vi+1=σi.(ri)v_{i+1} = \sigma_i.(r_i) v1=xv_1 = x ℒ=12‖vn−t‖\mathcal{L} = \frac{1}{2} \Vert v_{n} - t \Vert

ℒ¯=1vn¯=ℒ¯(y−t)ri¯=vi¯.*σi′(ri)Wi¯=vi¯ri−1Tbi¯=vi¯vi−1¯=WiTvi¯\begin{align}
  \overline{\mathcal{L}} &= 1\\
  \overline{v_n} &= \overline{\mathcal{L}}(y-t)\\
  \overline{r_i} &= \overline{v_i} .* \sigma_i^\prime (r_i)\\
  \overline{W_i} &= \overline{v_i}r_{i-1}^{T}\\
  \overline{b_i} &= \overline{v_i}\\
  \overline{v_{i-1}} &= W_{i}^{T} \overline{v_i} \end{align}



10.3.5 Reverse-Mode Automatic Differentiation and vjps

Backpropagation of a neural network is thus a different way of accumulating derivatives. If ff is a composition of LL functions:

f=fL∘fL−1∘…∘f1f = f^L \circ f^{L-1} \circ \ldots \circ f^1

Then the Jacobian matrix satisfies:

J=JLJL−1…J1J = J_L J_{L-1} \ldots J_1

A program is essentially a nice way of writing a function in composition form. Forward-mode automatic differentiation worked by propagating forward the actions of the Jacobians at every step of the program:

Jv=JL(JL−1(…(J1v)…))Jv = J_L (J_{L-1} (\ldots (J_1 v) \ldots ))

effectively calculating the Jacobian of the program by multiplying by the Jacobians from left to right at each step of the way. This means doing primitive JvJv calculations on each underlying problem, and pushing that calculation through.

But what about reverse accumulation? This can be isolated to the simple expression graph:



In backpropagation, we just showed that when doing reverse accumulation, the rule is that multiplication forwards is multiplication by the transpose backwards. So if the forward way to compute the Jacobian in reverse is to replace the matrix by its transpose:



We can either look at it as JTvJ^T v, or by transposing the equation vTJv^T J. It’s right there that we have a vector-transpose Jacobian product, or a vjp.

We can thus think of this as a different direction for the Jacobian accumulation. Reverse-mode automatic differentiation moves backwards through our composed Jacobian. For a value vv at the end, we can push it backwards:

vTJ=(…((vTJL)JL−1)…)J1v^T J = (\ldots ((v^T J_L) J_{L-1}) \ldots ) J_1

doing a vjp at every step of the way, which is simply doing reverse-mode AD of that function (and if it’s linear, then simply doing the matrix multiplication). Thus reverse-mode AD is just a grouping of vjps into a single larger expression, instead of linearizing every single step.



10.3.6 Primitives of Reverse Mode

For forward-mode AD, we saw that we could define primitives in order to accelerate the calculation. For example, knowing that

exp(x+ϵ)=exp(x)+exp(x)ϵexp(x+\epsilon) = exp(x) + exp(x)\epsilon

allows the program to skip autodifferentiating through the code for exp. This was simple with forward-mode since we could represent the operation on a Dual number. What’s the equivalent for reverse-mode AD? The answer is the pullback function. If y=[y1,y2,…]=f(x1,x2,…)y = [y_1,y_2,\ldots] = f(x_1,x_2, \ldots), then [x1¯,x2¯,…]=ℬfx(y¯)[\overline{x_1},\overline{x_2},\ldots]=\mathcal{B}_f^x(\overline{y}) is the pullback of ff at the point xx, defined for a scalar loss function L(y)L(y) as:

xi¯=∂L∂xi=∑j∂L∂yj∂yj∂xi\overline{x_i} = \frac{\partial L}{\partial x_i} = \sum_j \frac{\partial L}{\partial y_j} \frac{\partial y_j}{\partial x_i}

Using the notation from earlier, y¯=∂L∂y\overline{y} = \frac{\partial L}{\partial y} is the derivative of the some intermediate w.r.t. the cost function, and thus

xi¯=∑jyj¯∂yj∂xi=ℬfx(y¯)\overline{x_i} = \sum_j \overline{y_j} \frac{\partial y_j}{\partial x_i} = \mathcal{B}_f^x(\overline{y})

Note that ℬfx(y¯)\mathcal{B}_f^x(\overline{y}) is a function of xx because the reverse pass that is use embeds values from the forward pass, and the values from the forward pass to use are those calculated during the evaluation of f(x)f(x).

By the chain rule, if we don’t have a primitive defined for yi(x)y_i(x), we can compute that by ℬyi(y¯)\mathcal{B}_{y_i}(\overline{y}), and recursively apply this process until we hit rules that we know. The rules to start with are the scalar derivative rules with follow quite simply, and the multivariate rules which we derived above. For example, if y=f(x)=Axy=f(x)=Ax, then

ℬfx(y¯)=y¯TA\mathcal{B}_{f}^x(\overline{y}) = \overline{y}^T A

which is simply saying that the Jacobian of ff at xx is AA, and so the vjp is to multiply the vector transpose by AA.

Likewise, for element-wise operations, the Jacobian is diagonal, and thus the vjp is multiplying once again by a diagonal matrix against the derivative, deriving the same pullback as we had for backpropagation in a neural network. This then is a quicker encoding and derivation of backpropagation.



10.3.7 Multivariate Derivatives from Reverse Mode

Since the primitive of reverse mode is the vjp, we can understand its behavior by looking at a large primitive. In our simplest case, the function f(x)=Axf(x)=Ax outputs a vector value, which we apply our loss function L(y)=‖y−t‖L(y) = \Vert y-t \Vert to get a scalar. Thus we seed the scalar output v=1v=1, and in the first step backwards we have a vector to scalar function, so the first pullback transforms from 11 to the vector v2=2|y−t|v_2 = 2|y-t|. Then we take that vector and multiply it like v2TAv_2^T A to get the derivatives w.r.t. xx.

Now let L(y)L(y) be a vector function, i.e. we output a vector instead of a scalar from our loss function. Then vv is the seed to this process. Let’s assume that v=eiv = e_i, one of the basis vectors. Then

viTJ=eiTJv_i^T J = e_i^T J

pulls computes a row of the Jacobian. There, if we had a vector function y=f(x)y=f(x), the pullback ℬfx(ei)\mathcal{B}_f^x(e_i) is the row of the Jacobian f′(x)f'(x). Concatenating these is thus a way to build a full Jacobian. The gradient is thus a special case where yy is scalar, and thus the resulting Jacobian is just a single row, and therefore we set the seed equal to 11 to compute the unscaled gradient.



10.3.8 Multi-Seeding

Similarly to forward-mode having a dual number with multiple simultaneous derivatives through partials d=x+v1ϵ1+…+vmϵmd = x + v_1 \epsilon_1 + \ldots + v_m \epsilon_m, one can see that multi-seeding is an option in reverse-mode AD by, instead of pulling back a matrix instead of a row vector, where each row is a direction. Thus the matrix A=[v1v2…vn]TA = [v_1 v_2 \ldots v_n]^T evaluated as ℬfx(A)\mathcal{B}_f^x(A) is the equivalent operation to the forward-mode f(d)f(d) for generalized multivariate multiseeded reverse-mode automatic differentiation. One should take care to recognize the Jacobian as a generalized linear operator in this case and ensure that the shapes in the program correctly handle this storage of the reverse seed. When linear, this will automatically make use of BLAS3 operations, making it an efficient form for neural networks.



10.3.9 Sparse Reverse Mode AD

Since the Jacobian is built row-by-row with reverse mode AD, the sparse differentiation discussion from forward-mode AD applies similarly but to the transpose. Therefore, in order to perform sparse reverse mode automatic differentiation, one would build up a connectivity graph of the columns, and perform a coloring algorithm on this graph. The seeds of the reverse call, viv_i, would then be the color vectors, which would compute compressed rows, that are then decompressed similarly to the forward-mode case.



10.3.10 Forward Mode vs Reverse Mode

Notice that a pullback of a single scalar gives the gradient of a function, while the pushforward using forward-mode of a dual gives a directional derivative. Forward mode computes columns of a Jacobian, while reverse mode computes gradients (rows of a Jacobian). Therefore, the relative efficiency of the two approaches is based on the size of the Jacobian. If f:ℝn→ℝmf:\mathbb{R}^n \rightarrow \mathbb{R}^m, then the Jacobian is of size m×nm \times n. If mm is much smaller than nn, then computing by each row will be faster, and thus use reverse mode. In the case of a gradient, m=1m=1 while nn can be large, leading to this phenomena. Likewise, if nn is much smaller than mm, then computing by each column will be faster. We will see shortly the reverse mode AD has a high overhead with respect to forward mode, and thus if the values are relatively equal (or nn and mm are small), forward mode is more efficient.

However, since optimization needs gradients, reverse-mode definitely has a place in the standard toolchain which is why backpropagation is so central to machine learning.



10.3.11 Side Note on Mixed Mode

Interestingly, one can find cases where mixing the forward and reverse mode results would give an asymptotically better result. For example, if a Jacobian was non-zero in only the first 3 rows and first 3 columns, then sparse forward mode would still require N partials and reverse mode would require M seeds. However, one forward mode call of 3 partials and one reverse mode call of 3 seeds would calculate all three rows and columns with 𝒪(1)\mathcal{O}(1) work, as opposed to 𝒪(N)\mathcal{O}(N) or 𝒪(M)\mathcal{O}(M). Exactly how to make use of this insight in an automated manner is an open research question.



10.3.12 Forward-Over-Reverse and Hessian-Free Products

Using this knowledge, we can also develop quick ways for computing the Hessian. Recall from earlier in the discussion that Hessians are the Jacobian of the gradient. So let’s say for a scalar function ff we want to compute the Hessian. To compute the gradient, we use the reverse-mode AD pullback ∇f(x)=ℬfx(1)\nabla f(x) = \mathcal{B}_f^x(1). Recall that the pullback is a function of xx since that is the value at which the values from the forward pass are taken. Then since the Jacobian of the gradient vector is n×nn \times n (as many terms in the gradient as there are inputs!), it holds that we want to use forward-mode AD for this Jacobian. Therefore, using the dual number x=x0+e1ϵ1+…+enϵnx = x_0 + e_1 \epsilon_1 + \ldots + e_n \epsilon_n the reverse mode gradient function computes the full Hessian in one forward pass. What this amounts to is pushing forward the dual number forward sensitivities when building the pullback, and then when doing the pullback the dual portions, will be holding vectors for the columns of the Hessian.

Similarly, Hessian-vector products without computing the Hessian can be computed using the Jacobian-vector product trick on the function defined by the gradient. Here, HvHv is equivalent to the dual part of

∇f(x+vϵ)=ℬfx+vϵ(1)\nabla f(x+v\epsilon) = \mathcal{B}_f^{x+v\epsilon}(1)

This means that our Newton method for optimization:

pi+1=pi−H(pi)−1dC(pi)dpp_{i+1} = p_i - H(p_i)^{-1} \frac{dC(p_i)}{dp}

can be treated similarly to that for the nonlinear solving problem, where the linear system can be solved using Hessian-free vector products to build a Krylov subspace, giving rise to the Hessian-free Newton Krylov method for optimization.



10.3.13 References

We thank Roger Grosse’s lecture notes for the amazing tikz graphs.
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11 Differentiable Programming and Neural Differential Equations


11.1 Youtube Video Link

Our last discussion focused on how, at a high mathematical level, one could in theory build programs which compute gradients in a fast manner by looking at the computational graph and performing reverse-mode automatic differentiation. Within the context of parameter identification, we saw many advantages to this approach because it did not scale multiplicatively in the number of parameters, and thus it is an efficient way to calculate Jacobians of objects where there are less rows than columns (think of the gradient as 1 row).

More precisely, this is seen to be more about sparsity patterns, with reverse-mode as being more efficient if there are “enough” less row seeds required than column partials (with mixed mode approaches sometimes being much better). However, to make reverse-mode AD realistically usable inside of a programming language instead of a compute graph, we need to do three things:


	We need to have a way of implementing reverse-mode AD on a language.

	We need a systematic way to derive “adjoint” relationships (pullbacks).

	We need to see if there are better ways to fit parameters to data, rather than performing reverse-mode AD through entire programs!





11.2 Implementation of Reverse-Mode AD

Forward-mode AD was implementable through operator overloading and dual number arithmetic. However, reverse-mode AD requires reversing a program through its computational structure, which is a much more difficult operation. This begs the question, how does one actually build a reverse-mode AD implementation?


11.2.1 Static Graph AD

The most obvious solution is to use a static compute graph, since how we defined our differentiation structure was on a compute graph. Tensorflow is a modern example of this approach, where a user must define variables and operations in a graph language (that’s embedded into Python, R, Julia, etc.), and then execution on the graph is easy to differentiate. This has the advantage of being a simplified and controlled form, which means that not only differentiation transformations are possible, but also things like automatic parallelization. However, many see directly writing a (static) computation graph as a barrier for practical use since it requires completely rewriting all existing programs to this structure.



11.2.2 Tracing-Based AD and Wengert Lists

Recall that an alternative formulation of reverse-mode AD for composed functions

f=fL∘fL−1∘…∘f1f = f^L \circ f^{L-1} \circ \ldots \circ f^1

is through pullbacks on the Jacobians:

vTJ=(…((vTJL)JL−1)…)J1v^T J = (\ldots ((v^T J_L) J_{L-1}) \ldots ) J_1

Therefore, if one can transform the program structure into a list of composed functions, then reverse-mode AD is the successive application of pullbacks going in the reverse direction:

ℬfx(A)=ℬf1x(…(ℬfL−1fL−2(fL−3(…f1(x)…))(ℬfLfL−1(fL−2(…f1(x)…))(A)))…)\mathcal{B}_{f}^{x}(A)=\mathcal{B}_{f^{1}}^{x}\left(\ldots\left(\mathcal{\mathcal{B}}_{f^{L-1}}^{f^{L-2}(f^{L-3}(\ldots f^{1}(x)\ldots))}\left(\mathcal{B}_{f^{L}}^{f^{L-1}(f^{L-2}(\ldots f^{1}(x)\ldots))}(A)\right)\right)\ldots\right)

Recall that the pullback ℬfx(y¯)\mathcal{B}_f^x(\overline{y}) requires knowing:


	The operation being performed

	The value xx of the forward pass



The idea is to then build a Wengert list that is from exactly the forward pass of a specific xx, also known as a trace, and thus giving rise to tracing-based reverse-mode AD. This is the basis of many reverse-mode implementations, such as Julia’s Tracker.jl (Flux.jl’s old AD), ReverseDiff.jl, PyTorch, Tensorflow Eager, Autograd, and Autograd.jl. It is widely adopted due to its simplicity in implementation.


11.2.2.1 Inspecting Tracker.jl

Tracker.jl is a very simple implementation to inspect. The definition of its number and array types are as follows:


struct Call{F,As<:Tuple}
  func::F
  args::As
end

mutable struct Tracked{T}
  ref::UInt32
  f::Call
  isleaf::Bool
  grad::T
  Tracked{T}(f::Call) where T = new(0, f, false)
  Tracked{T}(f::Call, grad::T) where T = new(0, f, false, grad)
  Tracked{T}(f::Call{Nothing}, grad::T) where T = new(0, f, true, grad)
end

mutable struct TrackedReal{T<:Real} <: Real
  data::T
  tracker::Tracked{T}
end

struct TrackedArray{T,N,A<:AbstractArray{T,N}} <: AbstractArray{T,N}
  tracker::Tracked{A}
  data::A
  grad::A
  TrackedArray{T,N,A}(t::Tracked{A}, data::A) where {T,N,A} = new(t, data)
  TrackedArray{T,N,A}(t::Tracked{A}, data::A, grad::A) where {T,N,A} = new(t, data, grad)
end




As expected, it replaces every single number and array with a value that will store not just perform the operation, but also build up a list of operations along with the values at every stage. Then pullback rules are implemented for primitives via the @grad macro. For example, the pullback for the dot product is implemented as:


@grad dot(xs, ys) = dot(data(xs), data(ys)), Δ -> (Δ .* ys, Δ .* xs)




This is read as: the value going forward is computed by using the Julia dot function on the arrays, and the pullback embeds the backs of the forward pass and uses Δ .* ys as the derivative with respect to x, and Δ .* xs as the derivative with respect to y. This element-wise nature makes sense given the diagonal-ness of the Jacobian.

Note that this also allows utilizing intermediates of the forward pass within the reverse pass. This is seen in the definition of the pullback of meanpool:


@grad function meanpool(x, pdims::PoolDims; kw...)
  y = meanpool(data(x), pdims; kw...)
  y, Δ -> (nobacksies(:meanpool, NNlib.∇meanpool(data.((Δ, y, x))..., pdims; kw...)), nothing)
end




where the derivative makes use of not only x, but also y so that the meanpool does not need to be re-calculated.

Using this style, Tracker.jl moves forward, building up the value and closures for the backpass and then recursively pulls back the input Δ to receive the derivatve.




11.2.3 Source-to-Source AD

Given our previous discussions on performance, you should be horrified with how this approach handles scalar values. Each TrackedReal holds as Tracked{T} which holds a Call, not a Call{F,As<:Tuple}, and thus it’s not strictly typed. Because it’s not strictly typed, this implies that every single operation is going to cause heap allocations. If you measure this in PyTorch, TensorFlow Eager, Tracker, etc. you get around 500ns-2ms of overhead. This means that a 2ns + operation becomes… >500ns! Oh my!

This is not the only issue with tracing. Another issue is that the trace is value-dependent, meaning that every new value can build a new trace. Thus one cannot easily JIT compile a trace because it’ll be different for every gradient calculation (you can compile it, but you better make sure the compile times are short!). Lastly, the Wengert list can be much larger than the code itself. For example, if you trace through a loop that is for i in 1:100000, then the trace will be huge, even if the function is relatively simple. This is directly demonstrated in the JAX “how it works” slide:



To avoid these issues, another version of reverse-mode automatic differentiation is source-to-source transformations. In order to do source code transformations, you need to know how to transform all language constructs via the reverse pass. This can be quite difficult (what is the “adjoint” of lock?), but when worked out this has a few benefits. First of all, you do not have to track values, meaning stack-allocated values can stay on the stack. Additionally, you can JIT compile one backpass because you have a single function used for all backpasses. Lastly, you don’t need to unroll your loops! Instead, which each branch you’d need to insert some data structure to recall the values used from the forward pass (in order to invert in the right directions). However, that can be much more lightweight than a tracking pass.

This can be a difficult problem to do on a general programming language. In general it needs a strong programmatic representation to use as a compute graph. Google’s engineers did an analysis when choosing Swift for TensorFlow and narrowed it down to either Swift or Julia due to their internal graph structures. Thus, it should be no surprise that the modern source-to-source AD systems are Zygote.jl for Julia, and Swift for TensorFlow in Swift. Additionally, older AD systems, like Tampenade, ADIFOR, and TAF, all for Fortran, were source-to-source AD systems.




11.3 Derivation of Reverse Mode Rules: Adjoints and Implicit Function Theorem

In order to require the least amount of work from our AD system, we need to be able to derive the adjoint rules at the highest level possible. Here are a few well-known cases to start understanding. These next examples are from Steven Johnson’s resource.


11.3.1 Adjoint of Linear Solve

Let’s say we have the function A(p)x=b(p)A(p)x=b(p), i.e. this is the function that is given by the linear solving process, and we want to calculate the gradients of a cost function g(x,p)g(x,p). To evaluate the gradient directly, we’d calculate:

dgdp=gp+gxxp\frac{dg}{dp} = g_p + g_x x_p

where xpx_p is the derivative of each value of xx with respect to each parameter pp, and thus it’s an M×PM \times P matrix (a Jacobian). Since gg is a small cost function, gpg_p and gxg_x are easy to compute, but xpx_p is given by:

xpi=A−1(bpi−Apix)x_{p_i} = A^{-1}(b_{p_i}-A_{p_i}x)

and so this is PP M×MM \times M linear solves, which is expensive! However, if we multiply by

λT=gxA−1\lambda^{T} = g_x A^{-1}

then we obtain

dgdp|f=0=gp−λTfp=gp−λT(Apx−bp)\frac{dg}{dp}\vert_{f=0} = g_p - \lambda^T f_p = g_p - \lambda^T (A_p x - b_p)

which is an alternative formulation of the derivative at the solution value. However, in this case there is no computational benefit to this reformulation.



11.3.2 Adjoint of Nonlinear Solve

Now let’s look at some f(x,p)=0f(x,p)=0 nonlinear solving. Differentiating by pp gives us:

fxxp+fp=0f_x x_p + f_p = 0

and thus xp=−fx−1fpx_p = -f_x^{-1}f_p. Therefore, using our cost function we write:

dgdp=gp+gxxp=gp−gx(fx−1fp)\frac{dg}{dp} = g_p + g_x x_p = g_p - g_x \left(f_x^{-1} f_p \right)

or

dgdp=gp−(gxfx−1)fp\frac{dg}{dp} = g_p - \left(g_x f_x^{-1} \right) f_p

Since gxg_x is 1×M1 \times M, fx−1f_x^{-1} is M×MM \times M, and fpf_p is M×PM \times P, this grouping changes the problem gets rid of the size MPMP term.

As is normal with backpasses, we solve for xx through the forward pass however we like, and then for the backpass solve for

fxTλ=gxTf_x^T \lambda = g_x^T

to obtain

dgdp|f=0=gp−λTfp\frac{dg}{dp}\vert_{f=0} = g_p - \lambda^T f_p

which does the calculation without ever building the size M×MPM \times MP term.



11.3.3 Adjoint of Ordinary Differential Equations

We with to solve for some cost function G(u,p)G(u,p) evaluated throughout the differential equation, i.e.:

G(u,p)=G(u(p))=∫t0Tg(u(t,p))dtG(u,p) = G(u(p)) = \int_{t_0}^T g(u(t,p))dt

To derive this adjoint, introduce the Lagrange multiplier λ\lambda to form:

I(p)=G(p)−∫t0Tλ*(u′−f(u,p,t))dtI(p) = G(p) - \int_{t_0}^T \lambda^\ast (u^\prime - f(u,p,t))dt

Since u′=f(u,p,t)u^\prime = f(u,p,t), this is the mathematician’s trick of adding zero, so then we have that

dGdp=dIdp=∫t0T(gp+gus)dt−∫t0Tλ*(s′−fus−fp)dt\frac{dG}{dp} = \frac{dI}{dp} = \int_{t_0}^T (g_p + g_u s)dt - \int_{t_0}^T \lambda^\ast (s^\prime - f_u s - f_p)dt

for ss being the sensitivity, s=dudps = \frac{du}{dp}. After applying integration by parts to λ*s′\lambda^\ast s^\prime, we get that:

∫t0Tλ*(s′−fus−fp)dt=∫t0Tλ*s′dt−∫t0Tλ*(fus−fp)dt\int_{t_{0}}^{T}\lambda^{\ast}\left(s^{\prime}-f_{u}s-f_{p}\right)dt  =\int_{t_{0}}^{T}\lambda^{\ast}s^{\prime}dt-\int_{t_{0}}^{T}\lambda^{\ast}\left(f_{u}s-f_{p}\right)dt =|λ*(t)s(t)|t0T−∫t0Tλ*′sdt−∫t0Tλ*(fus−fp)dt=|\lambda^{\ast}(t)s(t)|_{t_{0}}^{T}-\int_{t_{0}}^{T}\lambda^{\ast\prime}sdt-\int_{t_{0}}^{T}\lambda^{\ast}\left(f_{u}s-f_{p}\right)dt

To see where we ended up, let’s re-arrange the full expression now:

dGdp=∫t0T(gp+gus)dt+|λ*(t)s(t)|t0T−∫t0Tλ*′sdt−∫t0Tλ*(fus−fp)dt\frac{dG}{dp} =\int_{t_{0}}^{T}(g_{p}+g_{u}s)dt+|\lambda^{\ast}(t)s(t)|_{t_{0}}^{T}-\int_{t_{0}}^{T}\lambda^{\ast\prime}sdt-\int_{t_{0}}^{T}\lambda^{\ast}\left(f_{u}s-f_{p}\right)dt =∫t0T(gp+λ*fp)dt+|λ*(t)s(t)|t0T−∫t0T(λ*′+λ*fu−gu)sdt=\int_{t_{0}}^{T}(g_{p}+\lambda^{\ast}f_{p})dt+|\lambda^{\ast}(t)s(t)|_{t_{0}}^{T}-\int_{t_{0}}^{T}\left(\lambda^{\ast\prime}+\lambda^\ast f_{u}-g_{u}\right)sdt

That was just a re-arrangement. Now, let’s require that

λ′=−dfdu*λ+(dgdu)*\lambda^\prime = -\frac{df}{du}^\ast \lambda + \left(\frac{dg}{du} \right)^\ast λ(T)=0\lambda(T) = 0

This means that the boundary term of the integration by parts is zero, and also one of those integral terms are perfectly zero. Thus, if λ\lambda satisfies that equation, then we get:

dGdp=λ*(t0)dGdu(t0)+∫t0T(gp+λ*fp)dt\frac{dG}{dp} = \lambda^\ast(t_0)\frac{dG}{du}(t_0) + \int_{t_0}^T \left(g_p + \lambda^\ast f_p \right)dt

which gives us our adjoint derivative relation.

If GG is discrete, then it can be represented via the Dirac delta:

G(u,p)=∫t0T∑i=1N‖di−u(ti,p)‖2δ(ti−t)dtG(u,p) = \int_{t_0}^T \sum_{i=1}^N \Vert d_i - u(t_i,p)\Vert^2 \delta(t_i - t)dt

in which case

gu(ti)=2(di−u(ti,p))g_u(t_i) = 2(d_i - u(t_i,p))

at the data points (ti,di)(t_i,d_i). Therefore, the derivative of an ODE solution with respect to a cost function is given by solving for λ*\lambda^\ast using an ODE for λT\lambda^T in reverse time, and then using that to calculate dGdp\frac{dG}{dp}. Note that dGdp\frac{dG}{dp} can be calculated simultaneously by appending a single value to the reverse ODE, since we can simply define the new ODE term as gp+λ*fpg_p + \lambda^\ast f_p, which would then calculate the integral on the fly (ODE integration is just… integration!).



11.3.4 Complexities of Implementing ODE Adjoints

The image below explains the dilemma:



Essentially, the whole problem is that we need to solve the ODE

λ′=−dfdu*λ−(dgdu)*\lambda^\prime = -\frac{df}{du}^\ast \lambda - \left(\frac{dg}{du} \right)^\ast λ(T)=0\lambda(T) = 0

in reverse, but dfdu\frac{df}{du} is defined by u(t)u(t) which is a value only computed in the forward pass (the forward pass is embedded within the backpass!). Thus we need to be able to retrieve the value of u(t)u(t) to get the Jacobian on-demand. There are three ways which this can be done:


	If you solve the reverse ODE u′=f(u,p,t)u^\prime = f(u,p,t) backwards in time, mathematically it’ll give equivalent values. Computation-wise, this means that you can append u(t)u(t) to λ(t)\lambda(t) (to dGdp\frac{dG}{dp}) to calculate all terms at the same time with a single reverse pass ODE. However, numerically this is unstable and thus not always recommended (ODEs are reversible, but ODE solver methods are not necessarily going to generate the same exact values or trajectories in reverse!)

	If you solve the forward ODE and receive a continuous solution u(t)u(t), you can interpolate it to retrieve the values at any given the time reverse pass needs the dfdu\frac{df}{du} Jacobian. This is fast but memory-intensive.

	Every time you need a value u(t)u(t) during the backpass, you re-solve the forward ODE to u(t)u(t). This is expensive! Thus one can instead use checkpoints, i.e. save at finitely many time points during the forward pass, and use those as starting points for the u(t)u(t) calculation.



Alternative strategies can be investigated, such as an interpolation which stores values in a compressed form.



11.3.5 The vjp and Neural Ordinary Differential Equations

It is here that we can note that, if ff is a function defined by a neural network, we arrive at the neural ordinary differential equation. This adjoint method is thus the backpropagation method for the neural ODE. However, the backpass

λ′=−dfdu*λ−(dgdu)*\lambda^\prime = -\frac{df}{du}^\ast \lambda - \left(\frac{dg}{du} \right)^\ast λ(T)=0\lambda(T) = 0

can be improved by noticing dfdu*λ\frac{df}{du}^\ast \lambda is a vjp, and thus it can be calculated using ℬfu(t)(λ*)\mathcal{B}_f^{u(t)}(\lambda^\ast), i.e. reverse-mode AD on the function ff. If ff is a neural network, this means that the reverse ODE is defined through successive backpropagation passes of that neural network. The result is a derivative with respect to the cost function of the parameters defining ff (either a model or a neural network), which can then be used to fit the data (“train”).




11.4 Alternative “Training” Strategies

Those are the “brute force” training methods which simply use u(t,p)u(t,p) evaluations to calculate the cost. However, it is worth noting that there are a few better strategies that one can employ in the case of dynamical models.


11.4.1 Multiple Shooting Techniques

Instead of shooting just from the beginning, one can instead shoot from multiple points in time:



Of course, one won’t know what the “initial condition in the future” is, but one can instead make that a parameter. By doing so, each interval can be solved independently, and one can then add to the cost function that the end of one interval must match up with the beginning of the other. This can make the integration more robust, since shooting with incorrect parameters over long time spans can give massive gradients which makes it hard to hone in on the correct values.



11.4.2 Collocation Methods

If the data is dense enough, one can fit a curve through the points, such as a spline:



If that’s the case, one can use the fit spline in order to estimate the derivative at each point. Since the ODE is defined as u′=f(u,p,t)u^\prime = f(u,p,t), one then then use the cost function

C(p)=∑i=1N‖ũ′(ti)−f(u(ti),p,t)‖C(p) = \sum_{i=1}^N \Vert\tilde{u}^{\prime}(t_i) - f(u(t_i),p,t)\Vert

where ũ′(ti)\tilde{u}^{\prime}(t_i) is the estimated derivative at the time point tit_i. Then one can fit the parameters to ensure this holds. This method can be extremely fast since the ODE doesn’t ever have to be solved! However, note that this is not able to compensate for error accumulation, and thus early errors are not accounted for in the later parts of the data. This means that the integration won’t necessarily match the data even if this fit is “good” if the data points are too far apart, a property that is not true with fitting. Thus, this is usually done as part of a two-stage method, where the starting stage uses collocation to get initial parameters which is then completed with a shooting method.











  
  
  ch013.xhtml
  
  

  
  
  

  

  




12 Introduction to MPI.jl

Description of MPI and MPI.jl, including demonstrations on its use.


	MPI.jl slides

	MPI.jl video







  
  
  ch014.xhtml
  
  

  
  
  

  

  




13 GPU programming


13.1 Youtube Video Part 1



13.2 Youtube Video Part 2



13.3 Levels of parallelism in hardware


	Instruction-Level Parallelism

	Data-Level Parallelism

	SIMD/Vector

	GPUs




	Thread-Level Parallelism




13.3.1 Instruction-Level Parallelism

Instruction-Level parallelism is used by your compiler and CPU to speed up serial programs. To signify that you are not expected to write code that considers ILP, the following code-snippets are in a very explicit low-level Julia dialect that approximates 1 RISC instruction per line.


function f(A, x)
    i = length(A)

    @label Loop
    a = A[i]    # Load
    c = a + x   # Add
    A[i] = c    # Store
    i = i - 1   # Decrement
    i > 0 && @goto Loop

    return A
end




The same code in RISC-V would have been:

...
Loop: fld    f0, 0(x1)
      fadd.d f4, f0, f2
      fsd    f4, 0(x1)
      addi   x1, x1, -8
      bnez   x1, Loop
...

** What are the data-dependencies in this loop? **



13.3.2 Pipeline Scheduling and loop unrolling


13.3.2.1 Latency


	Load latency: 1 cycle

	Float arithmetic latency: 2 cycle

	Integer arithmetic latency: 0 cycle




    @label Loop
    a = A[i]             # Cycle 1
    # Stall              # Cycle 2
    c = a + x            # Cycle 3
    # Stall              # Cycle 4
    # Stall              # Cycle 5
    A[i] = c             # Cycle 6
    i = i - 1            # Cycle 7
    i > 0 && @goto Loop  # Cycle 8




With our given latencies and issueing one operation per cycle, we can execute the loop in 8 cycles. By reordering we can execute it in 7 cycles. Can we do better?


    @label Loop
    a = A[i]             # Cycle 1
    i = i - 1            # Cycle 2
    c = a + x            # Cycle 3
    # Stall              # Cycle 4
    # Stall              # Cycle 5
    A[i+1] = c             # Cycle 6
    i > 0 && @goto Loop  # Cycle 7




By reordering the decrement we can hide the load latency.


	How many cylces are overhead: 2

	How many stall cycles: 2

	How many cycles are actually work: 3



In order to improve the performance of this code we want to reduce the overhead of the loop in relative to the work. One technique compilers will use is loop-unrolling. Unrolling replicates the loop body multiple times, changing the loop exit condition accordingly. This requires duplicating the loop so that we can handle iteration lengths that are not a multiple of the unrolling factor.

Note: A[i+1] is free since it can be precomputed relative to A[i]



13.3.2.2 Unrolling by a factor of 4


    @label Loop
    a = A[i]
    c = a + x
    A[i] = c
    a1 = A[i-1]
    c1 = a1 + x
    A[i-1] = c1
    a2 = A[i-2]
    c2 = a2 + x
    A[i-2] = c2
    a3 = A[i-3]
    c3 = a3 + x
    A[i-3] = c3
    i = i - 4
    i > 4 && @goto Loop




By unrolling with a factor of 4, we have reduced the overhead to 2 cycles (ignoring stalls for now). Note that A[i-3] can be precomputed relative to A and is therefore free on most architectures.


	Do we still have stalls?: Yes

	How many cycles are overhead: 2

	How many stall cycles: 12

	How many cycles are actually work: 12




    @label Loop
    a = A[i]
    # Stall
    c = a + x
    # Stall
    # Stall
    A[i] = c
    a1 = A[i-1]
    # Stall
    c1 = a1 + x
    # Stall
    # Stall
    A[i-1] = c1
    a2 = A[i-2]
    # Stall
    c2 = a2 + x
    # Stall
    # Stall
    A[i-2] = c2
    a3 = A[i-3]
    # Stall
    c3 = a3 + x
    # Stall
    # Stall
    A[i-3] = c3
    i = i - 4
    i > 4 && @goto Loop




Can we re-order to reduce stalls?


    @label Loop
    a  = A[i]
    a1 = A[i-1]
    a2 = A[i-2]
    a3 = A[i-3]
    c  = a  + x
    c1 = a1 + x
    c2 = a2 + x
    c3 = a3 + x
    A[i]   = c
    A[i-1] = c1
    A[i-2] = c2
    A[i-3] = c3
    i = i - 4
    i > 4 && @goto Loop





	How many cycles are overhead (this includes stalls): 2

	How many cycles are actually work: 12



This is also called interleaving and one should note that we started to cluster operations together. Instead of expressing operations like this that are inherently data-parallel in a serial manner and expecting the compiler and the underlying architecture to pick up the slack, we can also also explicitly express the data-parallelism. The two big avenues of doing so are: explicit vector programming and GPU programming.




13.3.3 Data-parallelism

Not all programs are data parallel programs, but many in scientific computing are and this has caused the introduction of hardware specialised to perform data-parallel operations. As an example many modern CPUs include vector extensions that enable Single-Instruction-Multiple-Data (SIMD) programming.


13.3.3.1 SIMD (explicit vectorized)

Terms: Each vector element is processed by a vector lane.


using SIMD
A = rand(Float64, 64)
T = Vec{4, Float64}
x = 1.0

for i in 1:4:length(A)
    a = vload(T, A, i)
    c = a + x
    vstore(c, A, i)
end





	Stalls are only per instruction, and not per element

	reduced overhead processing of 3*<4xFloat64> per iteration with only 2 overhead instructions (excluding stalls), so the overhead is amortized across 4 elements.



Note: - We can remove stalls similar to what we did for the serial code: - pipelining - interleaving and unrolling - Latencies will be higher


13.3.3.1.1 How do we handle branching

Translating serial code to a vector processor is tricky if there are data or index dependent control-flow. There are some architectures (see the NEC Aurora VX) that have support for vector predication and there are also masked load and store instructions for SIMD on Intel CPUs. In general though one has to do a manual transform that computes both sides of the branch and then merges the results together.


A = rand(Int64, 64)
for i in 1:length(A)
    a = A[i]
    if a % 2 == 0
        A[i] = -a
    end
end





using SIMD
A = rand(Int64, 64)
T = Vec{4, Int64}

for i in 1:4:length(A)
    a = vload(T, A, i)
    mask = a % 2 == 0        # calculate mask
    b = -a                   # If branch
    c = vifelse(mask, b, a)  # merge results
    vstore(c, A, i)
end







13.3.3.2 GPU (implicit vectorized)

Instead of using explicit vectorization, GPUs change the programming model so that the programmer writes a kernel which operates over each element of the data. In effect the programmer is writing a program that is executed for each vector lane. It is important to remember that the hardware itself still operates on vectors (CUDA calls this warp-size and it is 32 elements).

At this point please refer to the lecture slides
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14 PDEs, Convolutions, and the Mathematics of Locality


14.1 Youtube Video

At this point we have identified how the worlds of machine learning and scientific computing collide by looking at the parameter estimation problem. Training neural networks is parameter estimation of a function f where f is a neural network. Backpropagation of a neural network is simply the adjoint problem for f, and it falls under the class of methods used in reverse-mode automatic differentiation. But this story also extends to structure. Recurrent neural networks are the Euler discretization of a continuous recurrent neural network, also known as a neural ordinary differential equation.

Given all of these relations, our next focus will be on the other class of commonly used neural networks: the convolutional neural network (CNN). It turns out that in this case there is also a clear analogue to convolutional neural networks in traditional scientific computing, and this is seen in discretizations of partial differential equations. To see this, we will first describe the convolution operation that is central to the CNN and see how this object naturally arises in numerical partial differential equations.



14.2 Convolutional Neural Networks

The purpose of a convolutional neural network is to be a network which makes use of the spatial structure of an image. An image is a 3-dimensional object: width, height, and 3 color channels. The convolutional operations keeps this structure intact and acts against this object is a 3-tensor. A convolutional layer is a function that applies a stencil to each point. This is illustrated by the following animation:





convolution



This is the 2D stencil:

1  0  1
0  1  0
1  0  1

which is then applied to the matrix at each inner point to go from an NxNx3 matrix to an (N-2)x(N-2)x3 matrix.

Another operation used with convolutions is the pooling layer. For example, the maxpool layer is stencil which takes the maximum of the the value and its neighbor, and the meanpool takes the mean over the nearby values, i.e. it is equivalent to the stencil:

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

A convolutional neural network is then composed of layers of this form. We can express this mathematically by letting conv(x;S)conv(x;S) as the convolution of xx given a stencil SS. If we let dense(x;W,b,σ)=σ(W*x+b)dense(x;W,b,σ) = σ(W*x + b) as a layer from a standard neural network, then deep convolutional neural networks are of forms like:

CNN(x)=dense(conv(maxpool(conv(x))))CNN(x) = dense(conv(maxpool(conv(x))))

which can be expressed in Flux.jl syntax as:


m = Chain(
  Conv((2,2), 1=>16, relu),
  x -> maxpool(x, (2,2)),
  Conv((2,2), 16=>8, relu),
  x -> maxpool(x, (2,2)),
  x -> reshape(x, :, size(x, 4)),
  Dense(288, 10), softmax) |> gpu






14.3 Discretizations of Partial Differential Equations

Now let’s investigate discertizations of partial differential equations. A canonical differential equation to start with is the Poisson equation. This is the equation:

uxx=f(x)u_{xx} = f(x)

where here we have that subscripts correspond to partial derivatives, i.e. this syntax stands for the partial differential equation:

d2udx2=f(x)\frac{d^2u}{dx^2} = f(x)

In this case, ff is some given data and the goal is to find the uu that satisfies this equation. There are two ways this is generally done:


	Expand out the derivative in terms of Taylor series approximations.

	Expand out uu in terms of some function basis.




14.3.1 Finite Difference Discretizations

Let’s start by looking at Taylor series approximations to the derivative. In this case, we will use what’s known as finite differences. The simplest finite difference approximation is known as the first order forward difference. This is commonly denoted as

δ+u=u(x+Δx)−u(x)Δx\delta_{+}u=\frac{u(x+\Delta x)-u(x)}{\Delta x}

This looks like a derivative, and we think it’s a derivative as Δx→0\Delta x\rightarrow 0, but let’s show that this approximation is meaningful. Assume that uu is sufficiently nice. Then from a Taylor series we have that

u(x+Δx)=u(x)+Δxu′(x)+𝒪(Δx2)u(x+\Delta x)=u(x)+\Delta xu^{\prime}(x)+\mathcal{O}(\Delta x^{2})

(here I write (Δx)2\left(\Delta x\right)^{2} as Δx2\Delta x^{2} out of convenience, note that those two terms are not necessarily the same). That term on the end is called “Big-O Notation”. What is means is that those terms are asymptotically like Δx2\Delta x^{2}. If Δx\Delta x is small, then Δx2≪Δx\Delta x^{2}\ll\Delta x and so we can think of those terms as smaller than any of the terms we show in the expansion. By simplification notice that we get

u(x+Δx)−u(x)Δx=u′(x)+𝒪(Δx)\frac{u(x+\Delta x)-u(x)}{\Delta x}=u^{\prime}(x)+\mathcal{O}(\Delta x) This means that δ+\delta_{+} is correct up to first order, where the 𝒪(Δx)\mathcal{O}(\Delta x) portion that we dropped is the error. Thus δ+\delta_{+} is a first order approximation.

Notice that the same proof shows that the backwards difference,

δ−u=u(x)−u(x−Δx)Δx\delta_{-}u=\frac{u(x)-u(x-\Delta x)}{\Delta x}

is first order.


14.3.1.1 Second Order Approximations to the First Derivative

Now let’s look at the following:

δ0u=u(x+Δx)−u(x−Δx)2Δx.\delta_{0}u=\frac{u(x+\Delta x)-u(x-\Delta x)}{2\Delta x}.

The claim is this differencing scheme is second order. To show this, we once again turn to Taylor Series. Let’s do this for both terms:

u(x+Δx)=u(x)+Δxu′(x)+Δx22u′′(x)+𝒪(Δx3)u(x+\Delta x) =u(x)+\Delta xu^{\prime}(x)+\frac{\Delta x^{2}}{2}u^{\prime\prime}(x)+\mathcal{O}(\Delta x^{3}) u(x−Δx)=u(x)−Δxu′(x)+Δx22u′′(x)+𝒪(Δx3)u(x-\Delta x) =u(x)-\Delta xu^{\prime}(x)+\frac{\Delta x^{2}}{2}u^{\prime\prime}(x)+\mathcal{O}(\Delta x^{3})

Now we subtract the two:

u(x+Δx)−u(x−Δx)=2Δxu′(x)+𝒪(Δx3)u(x+\Delta x)-u(x-\Delta x)=2\Delta xu^{\prime}(x)+\mathcal{O}(\Delta x^{3})

and thus we move tems around to get

δ0u=u(x+Δx)−u(x−Δx)2Δx=u′(x)+𝒪(Δx2)\delta_{0}u=\frac{u(x+\Delta x)-u(x-\Delta x)}{2\Delta x}=u^{\prime}(x)+\mathcal{O}\left(\Delta x^{2}\right)

What does this improvement mean? Let’s say we go from Δx\Delta x to Δx2\frac{\Delta x}{2}. Then while the error from the first order method is around 12\frac{1}{2} the original error, the error from the central differencing method is 14\frac{1}{4} the original error! When trying to get an accurate solution, this quadratic reduction can make quite a difference in the number of required points.



14.3.1.2 Second Derivative Central Difference

Now we want a second derivative approximation. Let’s show the classic central difference formula for the second derivative:

δ02u=u(x+Δx)−2u(x)+u(x−Δx)Δx2\delta_{0}^{2}u=\frac{u(x+\Delta x)-2u(x)+u(x-\Delta x)}{\Delta x^{2}}

is second order. To do so, we expand out the two terms:

u(x+Δx)=u(x)+Δxu′(x)+Δx22u′′(x)+Δx36u′′′(x)+𝒪(Δx4)u(x+\Delta x) =u(x)+\Delta xu^{\prime}(x)+\frac{\Delta x^{2}}{2}u^{\prime\prime}(x)+\frac{\Delta x^{3}}{6}u^{\prime\prime\prime}(x)+\mathcal{O}\left(\Delta x^{4}\right) u(x−Δx)=u(x)−Δxu′(x)+Δx22u′′(x)−Δx36u′′′(x)+𝒪(Δx4)u(x-\Delta x) =u(x)-\Delta xu^{\prime}(x)+\frac{\Delta x^{2}}{2}u^{\prime\prime}(x)-\frac{\Delta x^{3}}{6}u^{\prime\prime\prime}(x)+\mathcal{O}\left(\Delta x^{4}\right)

and now plug it in. It’s clear the u(x)u(x) cancels out. The opposite signs makes u′(x)u^{\prime}(x) cancel out, and then the same signs and cancellation makes the u′′u^{\prime\prime} term have a coefficient of 1. But, the opposite signs makes the u′′′u^{\prime\prime\prime} term cancel out. Thus when we simplify and divide by Δx2\Delta x^{2} we get

u(x+Δx)−2u(x)+u(x−Δx)Δx2=u′′(x)+𝒪(Δx2).\frac{u(x+\Delta x)-2u(x)+u(x-\Delta x)}{\Delta x^{2}}=u^{\prime\prime}(x)+\mathcal{O}\left(\Delta x^{2}\right).



14.3.1.3 Finite Differencing from Polynomial Interpolation

Finite differencing can also be derived from polynomial interpolation. Draw a line between two points. What is the approximation for the first derivative?

δ+u=u(x+Δx)−u(x)Δx\delta_{+}u=\frac{u(x+\Delta x)-u(x)}{\Delta x}

Now draw a quadratic through three points. i.e., given u1u_{1}, u2u_{2}, and u3u_{3} at x=0x=0, Δx\Delta x, 2Δx2\Delta x, we want to find the interpolating polynomial

g(x)=a1x2+a2x+a3g(x)=a_{1}x^{2}+a_{2}x+a_{3}.

Setting g(0)=u1g(0)=u_{1}, g(Δx)=u2g(\Delta x)=u_{2}, and g(2Δx)=u3g(2\Delta x)=u_{3}, we get the following relations:

u1=g(0)=a3u_{1} =g(0)=a_{3} u2=g(Δx)=a1Δx2+a2Δx+a3u_{2} =g(\Delta x)=a_{1}\Delta x^{2}+a_{2}\Delta x+a_{3} u3=g(2Δx)=4a1Δx2+2a2Δx+a3u_{3} =g(2\Delta x)=4a_{1}\Delta x^{2}+2a_{2}\Delta x+a_{3}

which when we write in matrix form is:

(001Δx2Δx14Δx22Δx1)(a1a2a3)=(u1u2u3)\left(\begin{array}{ccc}
0 & 0 & 1\\
\Delta x^{2} & \Delta x & 1\\
4\Delta x^{2} & 2\Delta x & 1
\end{array}\right)\left(\begin{array}{c}
a_{1}\\
a_{2}\\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
u_{1}\\
u_{2}\\
u_{3}
\end{array}\right)

and thus we can invert the matrix to get the a’s:

a1=u3−2u2+u12Δx2a_{1} =\frac{u_{3}-2u_{2}+u_{1}}{2\Delta x^{2}} a2=−u3+4u2−3u12Δxa_{2} =\frac{-u_{3}+4u_{2}-3u_{1}}{2\Delta x} a3=u1 or g(x)=u3−2u2−u12Δx2x2+−u3+4u2−3u12Δxx+u1a_{3} =u_{1}\text{ or }g(x)=\frac{u_{3}-2u_{2}-u_{1}}{2\Delta x^{2}}x^{2}+\frac{-u_{3}+4u_{2}-3u_{1}}{2\Delta x}x+u_{1}

Now we can get derivative approximations from this. Notice for example that

g′(x)=u3−2u2+u1Δx2x+−u3+4u2−3u12Δxg^{\prime}(x)=\frac{u_{3}-2u_{2}+u_{1}}{\Delta x^{2}}x+\frac{-u_{3}+4u_{2}-3u_{1}}{2\Delta x}

Now what’s the derivative at the middle point?

g′(Δx)=u3−2u2+u1Δx+−u3+4u2−3u12Δx=u3−u12Δx.g^{\prime}\left(\Delta x\right)=\frac{u_{3}-2u_{2}+u_{1}}{\Delta x}+\frac{-u_{3}+4u_{2}-3u_{1}}{2\Delta x}=\frac{u_{3}-u_{1}}{2\Delta x}.

And now check

g′′(Δx)=u3−2u2+u1Δx2g^{\prime\prime}(\Delta x)=\frac{u_{3}-2u_{2}+u_{1}}{\Delta x^{2}} which is the central derivative formula. This gives a systematic way of deriving higher order finite differencing formulas. In fact, this formulation allows one to derive finite difference formulae for non-evenly spaced grids as well! The algorithm which automatically generates stencils from the interpolating polynomial forms is the Fornberg algorithm.



14.3.1.4 Multidimensional Finite Difference Operations

Now let’s look at the multidimensional Poisson equation, commonly written as:

Δu=f(x,y)\Delta u = f(x,y)

where Δu=uxx+uyy\Delta u = u_{xx} + u_{yy}. Using the logic of the previous sections, we can approximate the two derivatives to have:

u(x+Δx,y)−2u(x,y)+u(x−Δx,y)Δx2+u(x,y+Δy)−2u(x,y)+u(x−x,y−Δy)Δy2=u′′(x)+𝒪(Δx2)+𝒪(Δy2).\frac{u(x+\Delta x,y)-2u(x,y)+u(x-\Delta x,y)}{\Delta x^{2}} + \frac{u(x,y+\Delta y)-2u(x,y)+u(x-x,y-\Delta y)}{\Delta y^{2}}=u^{\prime\prime}(x)+\mathcal{O}\left(\Delta x^{2}\right) + \mathcal{O}\left(\Delta y^{2}\right).

Notice that this is the stencil operation:

0  1 0
1 -4 1
0  1 0

This means that derivative discretizations are stencil or convolutional operations.





14.4 Representation and Implementation of Stencil Operations


14.4.1 Stencil Operations as Sparse Matrices

Stencil operations are linear operators, i.e. S[x+αy]=S[x]+αS[y]S[x+\alpha y] = S[x] + \alpha S[y] for any sufficiently nice stencil operation SS (note “sufficiently nice”: there is a “stencil” operation mentioned in the convolutional neural networks section which was not linear: which operation was it?). Now we write these operators as matrices. Notice that for the vector:

U=(u1⋮un),U=\left(\begin{array}{c}
u_{1}\\
\vdots\\
u_{n}
\end{array}\right), we have that

δ+U=(u2−u1⋮un−un−1)\delta_{+}U=\left(\begin{array}{c}
u_{2}-u_{1}\\
\vdots\\
u_{n}-u_{n-1}
\end{array}\right)

and so

δ+=(−11−11⋱⋱−11)\delta_{+}=\left(\begin{array}{ccccc}
-1 & 1\\
 & -1 & 1\\
 &  & \ddots & \ddots\\
 &  &  & -1 & 1
\end{array}\right)

We can do the same to understand the other operators. But notice something: this operator isn’t square! In order for this to be square, in order to know what happens at the endpoint, we need to know the boundary conditions. I.e., an assumption on the value or derivative at u(0)u(0) or u(1)u(1) is required in order to get the first/last rows of the matrix!

Similarly, δ02\delta_{0}^{2} can be represented as the tridiagonal matrix of [1 -2 1], also known as the Strang matrix.

Now let’s think about the higher dimensional forms as a vector, i.e. vec(u). In this case, what is the matrix A for which reshape(A*vec(u),size(u)...) performs the higher dimensional Laplacian, i.e. uxx+uyyu_{xx} + u_{yy}? The answer is that it discretizes via Kronecker products to:

A=Iy⊗Ax+Ay⊗IxA=I_{y}\otimes A_{x}+A_{y}\otimes I_{x}

or:

∂2∂x2=(AxAx⋱Ax)\frac{\partial^{2}}{\partial x^{2}}=\left(\begin{array}{cccc}
A_{x}\\
 & A_{x}\\
 &  & \ddots\\
 &  &  & A_{x}
\end{array}\right)

and

∂2∂y2=(−2IxIxIx−2IxIx⋱)\frac{\partial^{2}}{\partial y^{2}}=\left(\begin{array}{cccc}
-2I_{x} & I_{x}\\
I_{x} & -2I_{x} & I_{x}\\
 &  & \ddots\\
\\
\end{array}\right)

To see why this is the case, understand it again as the stencil operation

0  1 0
1 -4 1
0  1 0

In this operation, at a point you still use the up and down neighbors, and thus this has a tridiagonal form since those are the immediate neighbors, but the next yy value is NN over, so this is where the block tridiagonal form comes for the stencil in the yy terms. When these are added together one receives the appropriate matrix. The Kronecker product effectively encodes this “N over” behavior. It also readily generalizes to NN dimensions. To see this for 3-dimensional Laplacians, uxx+uyy+uzzu_{xx} + u_{yy} + u_{zz}, notice that

A=Iz⊗Iy⊗Ax+Iz⊗Ay⊗Ix+Az⊗Iy⊗IxA=I_z \otimes I_{y}\otimes A_{x} + I_z \otimes A_{y}\otimes I_{x} + A_z \otimes I_y \otimes I_x

using the same reasoning about “N” over and “N^2 over”, and from this formulation it’s clear how to generalize to arbitrary dimensions.

We note that there is an alternative representation as well for 2D forms. We can represent them with left and right matrix operations. When uu is represented as a matrix, notice that

A(u)=Ayu+uAxA(u) = A_y u + u A_x

where AyA_y and AxA_x are both the [1 -2 1] 1D tridiagonal stencil matrix, but by right multiplying it’s occurring along the columns and left multiplying occurs along the rows. This then gives a semi-dense formulation of the stencil operation.



14.4.2 Implementation via Stencil Compilers

Sparse matrix implementations of stencils are fairly inefficient given the way that sparse matrices are represented (lists of (i,j,v) pairs, which are then compressed into CSR or CSC formats). However, it moves in the right direction by noticing that the operation

u[i+1,j] + u[i,j+1] + u[i-1,j] + u[i,j-1] - 4u[i,j]

is an inefficient way to walk through the data. The reason is because u[i,j+1] is using values that are far away from u[i,j], and thus they may not necessarily be in the cache.

Thus what is generally used is a stencil compiler which generates functions for stencil operations. These work by dividing the tensor into blocks on which the stencil is applied, where the blocks are small enough to allow the cache lines to fit the future points. This is a very deep computational topic that is beyond the scope of this course. Note one of the main reasons why NVIDA’s CUDA dominates machine learning is because of its cudnn library, which is a very efficient GPU stencil computation library that is specifically tuned to NVIDIA’s GPUs.




14.5 Cross-Discipline Learning

Given these relations, there is a lot each of the disciplines can learn from one another about stencil computations.


14.5.1 What ML can learning from SciComp: Stability of Convolutional RNNs

Stability of time-dependent partial differential equations is a long-known problem. Stability of an RNN defined by stencil computations is then stability of Euler discretizations of PDEs. Let’s take a look at Von Neumann analysis of PDE stability.

Let’s look at the error update equation. Write

ein=u(xj,tn)−ujne_{i}^{n}=u(x_{j},t_{n})-u_{j}^{n}

For eine_{i}^{n}, as before, plug it in, add and subtract u(xj,tn)=ujnu(x_{j},t^{n})=u_{j}^{n}, and then we get

ein+1=ein+μ(ei+1n−2ein+ei−1n)+Δtτine_{i}^{n+1}=e_{i}^{n}+\mu\left(e_{i+1}^{n}-2e_{i}^{n}+e_{i-1}^{n}\right)+\Delta t\tau_{i}^{n}

where

τin∼𝒪(Δt)+𝒪(Δx2).\tau_{i}^{n}\sim\mathcal{O}(\Delta t)+\mathcal{O}(\Delta x^{2}).

Stability requires that the homogenous equation goes to zero. Another way of saying that is that the propagation of errors has errors decrease their influence over time. Thus we look at:

ein+1=ein+μ(ei+1n−2ein+ei−1n)=(1−2μ)ein+μei+1n+μei−1ne_{i}^{n+1}   =e_{i}^{n}+\mu\left(e_{i+1}^{n}-2e_{i}^{n}+e_{i-1}^{n}\right) =\left(1-2\mu\right)e_{i}^{n}+\mu e_{i+1}^{n}+\mu e_{i-1}^{n}

A necessary condition for decreasing is then for all coefficients to be positive

1−2μ≥01-2\mu\geq0 or

μ≤12\mu\leq\frac{1}{2}

A more satisfying way may be to look at the generated ODE

u′=Auu^{\prime}=Au

where A is the matrix [μ,1−2μ,μ].\left[\mu,1-2\mu,\mu\right].

But finding the maximum eigenvalue is non-trivial. But for linear PDEs, one nice way to analyze the stability directly is to use the Fourier mode decomposition. This is known as Van Neumann stability analysis. To do this, decompose UU into the Fourier modes:

U(x,t)=∑kÛ(t)eikxU(x,t)=\sum_{k}\hat{U}(t)e^{ikx}

Since

xj=jΔx,x_{j}=j\Delta x,

we can write this out as

Ujn=ÛneikjΔxU_{j}^{n}=\hat{U}^{n}e^{ikj\Delta x}

and then plugging this into the FTCS scheme we get

Ûn+1eikjΔx−ÛneikjΔxΔt=Ûneik(j+1)Δx−2ÛneikjΔx+Ûneik(j−1)ΔxΔx2\frac{\hat{U}^{n+1}e^{ikj\Delta x}-\hat{U}^{n}e^{ikj\Delta x}}{\Delta t}=\frac{\hat{U}^{n}e^{ik(j+1)\Delta x}-2\hat{U}^{n}e^{ikj\Delta x}+\hat{U}^{n}e^{ik(j-1)\Delta x}}{\Delta x^{2}}

Let G be the growth factor, defined as

G=Ûn+1ÛnG=\frac{\hat{U}^{n+1}}{\hat{U}^{n}}

and thus after cancelling we get

G−1Δt=eikΔx−2+e−ikΔxΔx2\frac{G-1}{\Delta t}=\frac{e^{ik\Delta x}-2+e^{-ik\Delta x}}{\Delta x^{2}}

Since

eikΔx+e−ikΔx=2cos(kΔx),e^{ik\Delta x}+e^{-ik\Delta x}=2\cos\left(k\Delta x\right),

then we get

G=1−μ(2cos(kΔx)−2)G=1-\mu\left(2\cos\left(k\Delta x\right)-2\right)

and using the half angle formula

G=1−4μsin2(kΔx2)G=1-4\mu\sin^{2}\left(\frac{k\Delta x}{2}\right)

In order to be stable, we require

|G|≤1,\left|G\right|\leq1,

which means

−1≤1−4μsin2(kΔx2)≤1μ>0-1\leq1-4\mu\sin^{2}\left(\frac{k\Delta x}{2}\right)\leq1 \mu>0

and so ≤1\leq1 is simple. Since sin2(x)≤1\sin^{2}(x)\leq1, then we can simplify this to

−1≤1−4μ-1\leq1-4\mu

and thus μ≤12\mu\leq\frac{1}{2}. With backwards Euler we get

G−1Δt=GΔx2(eikΔx−2+e−ikΔx)\frac{G-1}{\Delta t}=\frac{G}{\Delta x^{2}}\left(e^{ik\Delta x}-2+e^{-ik\Delta x}\right)

and thus get

G+4Gμsin2(kΔx2)=1G+4G\mu\sin^{2}\left(\frac{k\Delta x}{2}\right)=1

and thus

G=11+4μsin2(kΔx2)≤1.G=\frac{1}{1+4\mu\sin^{2}\left(\frac{k\Delta x}{2}\right)}\leq1.



14.5.2 What SciComp can learn from ML: Moderate Generalizations to Partial Differential Equation Models

Instead of using

Δu=f\Delta u = f

we can start with

S[u]=fS[u] = f

a stencil computation, predefined to match a known partial differential equation operator, and then transfer learn the stencil to better match data. This is an approach which is starting to move down the lines of physics-informed machine learning that will be further explored in future lectures.
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15 Mixing Differential Equations and Neural Networks for Physics-Informed Learning


15.1 Youtube Video

Given this background in both neural network and differential equation modeling, let’s take a moment to survey some methods which integrate the two ideas. In this course we have fully described how Physics-Informed Neural Networks (PINNs) and neural ordinary differential equations are both trained and used. There are many other methods which utilize the composition of these ideas.

Julia codes for these methods are being developed, optimized, and tested in the SciML organization. Some packages to note are


	NeuralPDE.jl

	DiffEqFlux.jl

	DataDrivenDiffEq.jl

	Surrogates.jl

	ReservoirComputing.jl



and many more collaborations with scientists around the world (too many to note). And there are some scattered packages in other languages to note too, such as:


	deepxde

	pysindy

	ADCME.jl



and many more. This lecture is a quick survey on different directions that people have taken so far in this field. It is by no means comprehensive.



15.2 The Augmented Neural Ordinary Differential Equation

Note that not every function can be represented by an ordinary differential equation. Specifically, u(t)u(t) is an ℝ→ℝn\mathbb{R} \rightarrow \mathbb{R}^n function which cannot loop over itself except when the solution is cyclic. The reason is because the flow of the ODE’s solution is unique from every time point, and for it to have “two directions” at a point uiu_i in phase space would have two solutions to the problem

u′=f(u,p,t)u' = f(u,p,t)

where u(0)=uiu(0)=u_i, and thus this cannot happen (with ff sufficiently nice). However, if we have another degree of freedom we can ensure that the ODE does not overlap with itself. This is the augmented neural ordinary differential equation.

We only need one degree of freedom in order to not collide, so we can do the following. We can add a fake state to the ODE which is zero at every single data point. This then allows this extra dimension to “bump around” as necessary to let the function be a universal approximator. In code this looks like:


dudt = Chain(...) # Flux neural network
p,re = Flux.destructure(dudt)
dudt_(u,p,t) = re(p)(u)
prob = ODEProblem(dudt_,[u0,0f0],tspan,p)
augmented_data = vcat(ode_data,zeros(1,size(ode_data,2)))






15.3 Extensions to other Differential Equations

While our previous lectures focused on ordinary differential equations, the larger classes of differential equations can also have neural networks, for example:


	stochastic differential equations

	delay differential equations

	partial differential equations

	jump stochastic differential equations

	Hybrid differential equations (DEs with event handling)



For each of these equations, one can come up with an adjoint definition in order to define a backpropagation, or perform direct automatic differentiation of the solver code. One such paper in this area includes neural stochastic differential equations


15.3.1 The Universal Ordinary Differential Equation

This formulation of the neural differential equation in terms of a “knowledge-embedded” structure is leading. If we already knew something about the differential equation, could we use that information in the differential equation definition itself? This leads us to the idea of the universal differential equation, which is a differential equation that embeds universal approximators in its definition to allow for learning arbitrary functions as pieces of the differential equation.

The best way to describe this object is to code up an example. As our example, let’s say that we have a two-state system and know that the second state is defined by a linear ODE. This means we want to write:

x′=NN(x,y)x' = NN(x,y) y′=p1x+p2yy' = p_1 x + p_2 y

We can code this up as follows:


u0 = Float32[0.8; 0.8]
tspan = (0.0f0,25.0f0)

ann = Chain(Dense(2,10,tanh), Dense(10,1))

p1,re = Flux.destructure(ann)
p2 = Float32[-2.0,1.1]
p3 = [p1;p2]
ps = Flux.params(p3)

function dudt_(du,u,p,t)
    x, y = u
    du[1] = re(p[1:41])(u)[1]
    du[2] = p[end-1]*y + p[end]*x
end
prob = ODEProblem(dudt_,u0,tspan,p3)
concrete_solve(prob,Tsit5(),u0,p3,abstol=1e-8,reltol=1e-6)




and we can train the system to be stable at 1 as follows:


function predict_adjoint()
  Array(concrete_solve(prob,Tsit5(),u0,p3,saveat=0.0:0.1:25.0))
end
loss_adjoint() = sum(abs2,x-1 for x in predict_adjoint())
loss_adjoint()

data = Iterators.repeated((), 300)
opt = ADAM(0.01)
iter = 0
cb = function ()
  global iter += 1
  if iter % 50 == 0
    display(loss_adjoint())
    display(plot(solve(remake(prob,p=p3,u0=u0),Tsit5(),saveat=0.1),ylim=(0,6)))
  end
end

# Display the ODE with the current parameter values.
cb()

Flux.train!(loss_adjoint, ps, data, opt, cb = cb)




DiffEqFlux.jl supports the wide gambit of possible universal differential equations with combinations of stiffness, delays, stochasticity, etc. It does so by using Julia’s language-wide AD tooling, such as ReverseDiff.jl, Tracker.jl, ForwardDiff.jl, and Zygote.jl, along with specializations available whenever adjoint methods are known (and the choice between the two is given to the user).

Many of the methods below can be encapsulated as a choice of a universal differential equation and trained with higher order, adaptive, and more efficient methods with DiffEqFlux.jl.




15.4 Deep BSDE Methods for High Dimensional Partial Differential Equations

The key paper on deep BSDE methods is this article from PNAS by Jiequn Han, Arnulf Jentzen, and Weinan E. Follow up papers like this one have identified a larger context in the sense of forward-backwards SDEs for a large class of partial differential equations.


15.4.1 Understanding the Setup for Terminal PDEs

While this setup may seem a bit contrived given the “very specific” partial differential equation form (you know the end value? You have some parabolic form?), it turns out that there is a large class of problems in economics and finance that satisfy this form. The reason is because in these problems you may know the value of something at the end, when you’re going to sell it, and you want to evaluate it right now. The classic example is in options pricing. An option is a contract to be able to solve a stock at a given value. The simplest case is a contract that can only be executed at a pre-determined time in the future. Let’s say we have an option to sell a stock at 100 no matter what. This means that, if the stock at the strike time (the time the option can be sold) is 70, we will make 30 from this option, and thus the option itself is worth 30. The question is, if I have this option today, the strike time is 3 months in the future, and the stock price is currently 70, how much should I value the option today?

To solve this, we need to put a model on how we think the stock price will evolve. One simple version is a linear stochastic differential equation, i.e. the stock price will evolve with a constant interest rate rr with some volatility (randomness) σ\sigma, in which case:

dXt=rXtdt+σXtdWt.dX_t = r X_t dt + \sigma X_t dW_t.

From this model, we can evaluate the probability that the stock is going to be at given values, which then gives us the probability that the option is worth a given value, which then gives us the expected (or average) value of the option. This is the Black-Scholes problem. However, a more direct way of calculating this result is writing down a partial differential equation for the evolution of the value of the option VV as a function of time tt and the current stock price xx. At the final time point, if we know the stock price then we know the value of the option, and thus we have a terminal condition V(T,x)=g(x)V(T,x) = g(x) for some known value function g(x)g(x). The question is, given this value at time TT, what is the value of the option at time t=0t=0 given that the stock currently has a value x=ζx = \zeta. Why is this interesting? This will tell you what you think the option is currently valued at, and thus if it’s cheaper than that, you can gain money by buying the option right now! This means that the “solution” to the PDE is the value V(0,ζ)V(0,\zeta), where we know the final points V(T,x)=g(x)V(T,x) = g(x). This is precisely the type of problem that is solved by the deep BSDE method.



15.4.2 The Deep BSDE Method

Consider the class of semilinear parabolic PDEs, in finite time t∈[0,T]t\in[0, T] and dd-dimensional space x∈ℝdx\in\mathbb R^d, that have the form

∂u∂t(t,x)+12trace(σσT(t,x)(Hessxu)(t,x))+∇u(t,x)⋅μ(t,x)+f(t,x,u(t,x),σT(t,x)∇u(t,x))=0,\begin{align}
  \frac{\partial u}{\partial t}(t,x)    &+\frac{1}{2}\text{trace}\left(\sigma\sigma^{T}(t,x)\left(\text{Hess}_{x}u\right)(t,x)\right)\\
    &+\nabla u(t,x)\cdot\mu(t,x) \\
    &+f\left(t,x,u(t,x),\sigma^{T}(t,x)\nabla u(t,x)\right)=0,\end{align}

with a terminal condition u(T,x)=g(x)u(T,x)=g(x). In this equation, trace\text{trace} is the trace of a matrix, σT\sigma^T is the transpose of σ\sigma, ∇u\nabla u is the gradient of uu, and Hessxu\text{Hess}_x u is the Hessian of uu with respect to xx. Furthermore, μ\mu is a vector-valued function, σ\sigma is a d×dd \times d matrix-valued function and ff is a nonlinear function. We assume that μ\mu, σ\sigma, and ff are known. We wish to find the solution at initial time, t=0t=0, at some starting point, x=ζx = \zeta.

Let WtW_{t} be a Brownian motion and take XtX_t to be the solution to the stochastic differential equation

dXt=μ(t,Xt)dt+σ(t,Xt)dWtdX_t = \mu(t,X_t) dt + \sigma (t,X_t) dW_t

with initial condition X(0)=ζX(0)=\zeta. Previous work has shown that the solution satisfies the following BSDE:

u(t,Xt)−u(0,ζ)=−∫0tf(s,Xs,u(s,Xs),σT(s,Xs)∇u(s,Xs))ds+∫0t[∇u(s,Xs)]Tσ(s,Xs)dWs,\begin{align}
u(t, &X_t) - u(0,\zeta) = \\
& -\int_0^t f(s,X_s,u(s,X_s),\sigma^T(s,X_s)\nabla u(s,X_s)) ds \\
& + \int_0^t \left[\nabla u(s,X_s) \right]^T \sigma (s,X_s) dW_s,\end{align}

with terminating condition g(XT)=u(XT,WT)g(X_T) = u(X_T,W_T).

At this point, the authors approximate [∇u(s,Xs)]Tσ(s,Xs)\left[\nabla u(s,X_s) \right]^T \sigma (s,X_s) and u(0,ζ)u(0,\zeta) as neural networks. Using the Euler-Maruyama discretization of the stochastic differential equation system, one arrives at a recurrent neural network:





Deep BSDE





15.4.3 Julia Implementation

A Julia implementation for the deep BSDE method can be found at NeuralPDE.jl. The examples considered below are part of the standard test suite.



15.4.4 Financial Applications of Deep BSDEs: Nonlinear Black-Scholes

Now let’s look at a few applications which have PDEs that are solved by this method. One set of problems that are solved, given our setup, are Black-Scholes types of equations. Unlike a lot of previous literature, this works for a wide class of nonlinear extensions to Black-Scholes with large portfolios. Here, the dimension of the PDE for V(t,x)V(t,x) is the dimension of xx, where the dimension is the number of stocks in the portfolio that we want to consider. If we want to track 1000 stocks, this means our PDE is 1000 dimensional! Traditional PDE solvers would need around N1000N^{1000} points evolving over time in order to arrive at the solution, which is completely impractical.

One example of a nonlinear Black-Scholes equation in this form is the Black-Scholes equation with default risk. Here we are adding to the standard model the idea that the companies that we are buying stocks for can default, and thus our valuation has to take into account this default probability as the option will thus become value-less. The PDE that is arrived at is:

$$\frac{\partial u}{\partial t}(t,x) + \bar{\mu}\cdot \nabla u(t, x) + \frac{\bar{\sigma}^{2}}{2} \sum_{i=1}^{d} \left |x_{i}  \right |^{2} \frac{\partial^2 u}{\partial {x_{i}}^2}(t,x) \\ - (1 -\delta )Q(u(t,x))u(t,x) - Ru(t,x) = 0$$

with terminating condition g(x)=minixig(x) = \min_{i} x_i for x=(x1,...,x100)∈R100x = (x_{1}, . . . , x_{100}) \in R^{100}, where δ∈[0,1)\delta \in [0, 1), RR is the interest rate of the risk-free asset, and Q is a piecewise linear function of the current value with three regions (vh<vl,γh>γl)(v^{h} < v ^{l}, \gamma^{h} > \gamma^{l}),

Q(y)=𝟙(−∞,υh)(y)γh+𝟙[υl,∞)(y)γl+𝟙[υh,υl](y)[(γh−γl)(υh−υl)(y−υh)+γh].\begin{align}
Q(y) &= \mathbb{1}_{(-\infty,\upsilon^{h})}(y)\gamma ^{h}
+ \mathbb{1}_{[\upsilon^{l},\infty)}(y)\gamma ^{l}
\\ &+ \mathbb{1}_{[\upsilon^{h},\upsilon^{l}]}(y)
\left[ \frac{(\gamma ^{h} - \gamma ^{l})}{(\upsilon ^{h}- \upsilon ^{l})}
(y - \upsilon ^{h}) + \gamma ^{h}  \right  ].
\end{align}

This PDE can be cast into the form of the deep BSDE method by setting:

μ=μ¯Xtσ=σ¯diag(Xt)f=−(1−δ)Q(u(t,x))u(t,x)−Ru(t,x)\begin{align}
    \mu &= \overline{\mu} X_{t} \\
    \sigma &= \overline{\sigma} \text{diag}(X_{t}) \\
    f &= -(1 -\delta )Q(u(t,x))u(t,x) - R u(t,x)
\end{align}

The Julia code for this exact problem in 100 dimensions can be found here



15.4.5 Stochastic Optimal Control as a Deep BSDE Application

Another type of problem that fits into this terminal PDE form is the stochastic optimal control problem. The problem is a generalized context to what motivated us before. In this case, there are a set of agents which undergo some known stochastic model. What we want to do is apply some control (push them in some direction) at every single timepoint towards some goal. For example, we have the physics for the dynamics of drone flight, but there’s randomness in the wind condition, and so we want to control the engine speeds to move in a certain direction. However, there is a cost associated with controlling, and thus the question is how to best balance the use of controls with the natural stochastic evolution.

It turns out this is in the same form as the Black-Scholes problem. There is a model evolving forwards, and when we get to the end we know how much everything “cost” because we know if the drone got to the right location and how much energy it took. So in the same sense as Black-Scholes, we can know the value at the end and try and propagate it backwards given the current state of the system xx, to find out u(0,ζ)u(0,\zeta), i.e. how should we control right now given the current system is in the state x=ζx = \zeta. It turns out that the solution of u(t,x)u(t,x) where u(T,x)=g(x)u(T,x)=g(x) and we want to find u(0,ζ)u(0,\zeta) is given by a partial differential equation which is known as the Hamilton-Jacobi-Bellman equation, which is one of these terminal PDEs that is representable by the deep BSDE method.

Take the classical linear-quadratic Gaussian (LQG) control problem in 100 dimensions

dXt=2λctdt+2dWtdX_t = 2\sqrt{\lambda} c_t dt + \sqrt{2} dW_t

with t∈[0,T]t\in [0,T], X0=xX_0 = x, and with a cost function

C(ct)=𝔼[∫0T‖ct‖2dt+g(Xt)]C(c_t) = \mathbb{E}\left[\int_0^T \Vert c_t \Vert^2 dt + g(X_t) \right]

where XtX_t is the state we wish to control, λ\lambda is the strength of the control, and ctc_t is the control process. To minimize the control, the Hamilton–Jacobi–Bellman equation:

∂u∂t(t,x)+Δu(t,x)−λ‖∇u(t,x)‖2=0\frac{\partial u}{\partial t}(t,x) + \Delta u(t,x) - \lambda \Vert \nabla u(t,x) \Vert^2 = 0

has a solution u(t,x)u(t,x) which at t=0t=0 represents the optimal cost of starting from xx.

This PDE can be rewritten into the canonical form of the deep BSDE method by setting:

μ=0,σ=σ¯I,f=−α∥σT(s,Xs)∇u(s,Xs))∥2,\begin{align}
    \mu &= 0, \\
    \sigma &= \overline{\sigma} I, \\
    f &= -\alpha \left \| \sigma^T(s,X_s)\nabla u(s,X_s)) \right \|^{2},
\end{align}

where σ¯=2\overline{\sigma} = \sqrt{2}, T = 1 and X0=(0,...,0)∈R100X_0 = (0,. . . , 0) \in R^{100}.

The Julia code for solving this exact problem in 100 dimensions can be found here




15.5 Connections of Reservoir Computing to Scientific Machine Learning

Reservoir computing techniques are an alternative to the “full” neural network techniques we have previously discussed. However, the process of training neural networks has a few caveats which can cause difficulties in real systems:


	The tangent space diverges exponentially fast when the system is chaotic, meaning that results of both forward and reverse automatic differentiation techniques (and the related adjoints) are divergent on these kinds of systems.

	It is hard for neural networks to represent stiff systems. There are many reasons for this, one being that neural networks tend to drop high frequency behavior.



There are ways being investigated to alleviate these issues. For example, shadow adjoints can give a non-divergent average sense of a derivative on ergodic chaotic systems, but is significantly more expensive than the traditional adjoint.

To get around these caveats, some research teams have investigated alternatives which do not require gradient-based optimization. The clear frontrunner in this field is a type of architecture called echo state networks. A simplified formulation of an echo state network essentially fixes a neural network that defines a reservoir, i.e.

xn+1=σ(Wxn+Wfbyn)x_{n+1} = \sigma(W x_n + W_{fb} y_n) yn=g(Woutxn)y_n = g(W_{out} x_n)

where WW and WfbW_{fb} are fixed random matrices that are chosen before the training process, xnx_n is called the reservoir state, and yny_n is the output state for the observables. The idea is to find a projection WoutW_{out} from the high dimensional random reservoir xx to model the timeseries by yy. If the reservoir is a big enough and nonlinear enough random system, there should in theory exist a projection from that random system that matches any potential timeseries. Indeed, one can prove that echo state networks are universal adaptive filters under certain conditions.

If gg is invertible (and in many cases gg is taken to be the identity), then one can directly apply the inversion of gg to the data. This turns the training of WoutW_{out}, the only non-fixed portion, into a standard least squares regression between the reservoir and the observation series. This is then solved by classical means like SVD factorizations which can be stable in ill-conditioned cases.

Echo state networks have been shown to accurately reproduce chaotic attractors which are shown to be hard to train RNNs against. A demonstration via ReservoirComputing.jl clearly highlights this prediction ability:

 

However, this methodology still is not tailored to the continuous nature of dynamical systems found in scientific computing. Recent work has extended this methodolgy to allow for a continuous reservoir, i.e. a continuous-time echo state network. It is shown that using the adaptive points of a stiff ODE integrator gives a non-uniform sampling in time that makes it easier to learn stiff equations from less training points, and demonstrates the ability to learn equations where standard physics-informed neural network (PINN) training techniques fail.



This area of research is still far less developed than PINNs and neural differential equations but shows promise to more easily learn highly stiff and chaotic systems which are seemingly out of reach for these other methods.



15.6 Automated Equation Discovery: Outputting LaTeX for Dynamical Systems from Data

The SINDy algorithm enables data-driven discovery of governing equations from data. It leverages the fact that most physical systems have only a few relevant terms that define the dynamics, making the governing equations sparse in a high-dimensional nonlinear function space. Given a set of observations

𝐗=[𝐱T(t1)𝐱T(t2)⋮𝐱T(tm)]=[x1(t1)x2(t1)⋯xn(t1)x1(t2)x2(t2)⋯xn(t2)⋮⋮⋱⋮x1(tm)x2(tm)⋯xn(tm)]\begin{array}{c}
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}^{T}\left(t_{1}\right) \\
\mathbf{x}^{T}\left(t_{2}\right) \\
\vdots \\
\mathbf{x}^{T}\left(t_{m}\right)
\end{array}\right]=\left[\begin{array}{cccc}
x_{1}\left(t_{1}\right) & x_{2}\left(t_{1}\right) & \cdots & x_{n}\left(t_{1}\right) \\
x_{1}\left(t_{2}\right) & x_{2}\left(t_{2}\right) & \cdots & x_{n}\left(t_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}\left(t_{m}\right) & x_{2}\left(t_{m}\right) & \cdots & x_{n}\left(t_{m}\right)
\end{array}\right] \\
\end{array}

and a set of derivative observations

𝐗̇=[𝐱T(t1)𝐱̇T(t2)⋮𝐱T(tm)]=[ẋ1(t1)ẋ2(t1)⋯ẋn(t1)ẋ1(t2)ẋ2(t2)⋯ẋn(t2)⋮⋮⋱⋮ẋ1(tm)ẋ2(tm)⋯ẋn(tm)]\begin{array}{c}
\dot{\mathbf{X}}=\left[\begin{array}{c}
\mathbf{x}^{T}\left(t_{1}\right) \\
\dot{\mathbf{x}}^{T}\left(t_{2}\right) \\
\vdots \\
\mathbf{x}^{T}\left(t_{m}\right)
\end{array}\right]=\left[\begin{array}{cccc}
\dot{x}_{1}\left(t_{1}\right) & \dot{x}_{2}\left(t_{1}\right) & \cdots & \dot{x}_{n}\left(t_{1}\right) \\
\dot{x}_{1}\left(t_{2}\right) & \dot{x}_{2}\left(t_{2}\right) & \cdots & \dot{x}_{n}\left(t_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\dot{x}_{1}\left(t_{m}\right) & \dot{x}_{2}\left(t_{m}\right) & \cdots & \dot{x}_{n}\left(t_{m}\right)
\end{array}\right]
\end{array}

we can evaluate the observations in a basis Θ(X)\Theta(X):

Θ(𝐗)=[1𝐗𝐗P2𝐗P3⋯sin(𝐗)cos(𝐗)⋯]\Theta(\mathbf{X})=\left[\begin{array}{llllllll}
1 & \mathbf{X} & \mathbf{X}^{P_{2}} & \mathbf{X}^{P_{3}} & \cdots & \sin (\mathbf{X}) & \cos (\mathbf{X}) & \cdots
\end{array}\right]

where XPiX^{P_i} stands for all PiP_ith order polynomial terms. For example,

𝐗P2=[x12(t1)x1(t1)x2(t1)⋯x22(t1)⋯xn2(t1)x12(t2)x1(t2)x2(t2)⋯x22(t2)⋯xn2(t2)⋮⋮⋱⋮⋱⋮x12(tm)x1(tm)x2(tm)⋯x22(tm)⋯xn2(tm)]\mathbf{X}^{P_{2}}=\left[\begin{array}{cccccc}
x_{1}^{2}\left(t_{1}\right) & x_{1}\left(t_{1}\right) x_{2}\left(t_{1}\right) & \cdots & x_{2}^{2}\left(t_{1}\right) & \cdots & x_{n}^{2}\left(t_{1}\right) \\
x_{1}^{2}\left(t_{2}\right) & x_{1}\left(t_{2}\right) x_{2}\left(t_{2}\right) & \cdots & x_{2}^{2}\left(t_{2}\right) & \cdots & x_{n}^{2}\left(t_{2}\right) \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
x_{1}^{2}\left(t_{m}\right) & x_{1}\left(t_{m}\right) x_{2}\left(t_{m}\right) & \cdots & x_{2}^{2}\left(t_{m}\right) & \cdots & x_{n}^{2}\left(t_{m}\right)
\end{array}\right]

Using these matrices, SINDy finds this sparse basis 𝚵\mathbf{\Xi} over a given candidate library 𝚯\mathbf{\Theta} by solving the sparse regression problem Ẋ=𝚯𝚵\dot{X} =\mathbf{\Theta}\mathbf{\Xi} with L1L_1 regularization, i.e. minimizing the objective function ‖𝐗̇−𝚯𝚵‖2+λ‖𝚵‖1\left\Vert \mathbf{\dot{X}} - \mathbf{\Theta}\mathbf{\Xi} \right\Vert_2 + \lambda \left\Vert \mathbf{\Xi}\right\Vert_1. This method and other variants of SInDy, along with specialized optimizers for the LASSO L1L_1 optimization problem, have been implemented in packages like DataDrivenDiffEq.jl and pysindy. The result of these methods is LaTeX for the missing dynamical system.

Notice that to use this method, derivative data Ẋ\dot{X} is required. While in most publications on the subject this information is assumed. To find this, Ẋ\dot{X} is calculated directly from the time series XX by fitting a cubic spline and taking the approximated derivatives at the observation points. However, for this estimation to be stable one needs a fairly dense timeseries for the interpolation. To alleviate this issue, the universal differential equations work estimates terms of partially described models and then uses the neural network as an oracle for the derivative values to learn from subsets of the dynamical system. This allows for the neural network’s training to smooth out the derivative estimate between points while incorporating extra scientific information.

Other ways are being investigated for incorporating deep learning into the model discovery process. For example, extensions have been investigated where elements are defined by neural networks representing a basis of the Koopman operator. Additionally, much work is going on in improving the efficiency of the symbolic regression methods themselves, and making the methods implicit and parallel.



15.7 Surrogate Acceleration Methods

Another approach for mixing neural networks with differential equations is as a surrogate method. These methods are more mathematically trivial than the previous ideas, but can still achieve interesting results. A full example is explained in this video.

Say we have some function g(p)g(p) which depends on a solution to a differential equation u(t;p)u(t;p) and choices of parameters pp. Computationally how we evaluate this function is we do the following:


	Solve the differential equation with parameters pp

	Evaluate gg on the numerical solution for uu



However, this process is computationally expensive since it requires the numerical solution of uu for every evaluation. Thus, one can look at this setup and see g(p)g(p) itself is a nonlinear function. The idea is to train a neural network to be the function g(p)g(p), i.e. directly put in pp and return the appropriate value without ever solving the differential equation.

The video highlights an important fact about this method: it can be computationally expensive to train this kind of surrogate since many data points (p,g(p))(p,g(p)) are required. In fact, many more data points than you might use. However, after training, the surrogate network for g(p)g(p) can be a lot faster than the original simulation-based approach. This means that this is a method for accelerating real-time solutions by doing upfront computations. The total compute time will always be more, but in some sense the cost is amortized or shifted to be done before hand, so that the model does not need to be simulated on the fly. This can allow for things like computationally expensive models of drone flight to be used in a real-time controller.

This technique goes a long way back, but some recent examples of this have been shown. For example, there’s this paper which “accelerated” the solution of the 3-body problem using a neural network surrogate trained over a few days to get a 1 million times acceleration (after generating many points beforehand of course! In the paper, notice that it took 10 days to generate the training dataset). Additionally, there is this deep learning trebuchet example which showcased that inverse problems, i.e. control or finding parameters, can be completely encapsulated as a g(p)g(p) and learned with sufficient data.
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16 From Optimization to Probabilistic Programming


16.1 Youtube Video

With a high degree of probability, all things are probabilistic. In all of the cases we have previously looked at (differential equations, neural networks, neural differential equations, physics-informed neural networks, etc.) we have incorporated data into our models using point estimates, i.e. getting “exact fits”. However, data has noise and uncertainty. We want to extend our previous modeling approaches to include probabilistic estimates. This is known as probabilistic programming, or Bayesian estimation on general programming models. To approach this topic, we will first introduce the Bayesian way of thinking about variables as random variables, estimating probabilistic programs, and how efficient probabilistic programming frameworks incorporate differentiable programming.



16.2 Bayesian Modeling in a Nutshell

The idea of Bayesian modeling is to treat your variables as a random variable with respect to some distribution. As a starting point, think about the linear model

f(x)=axf(x) = ax

The standard way to think of the linear model is that aa is a variable, and so you put a value xx in and compute axax. However, in the Bayesian sense, the value of aa can be a random variable. A random variable ZZ is a variable which has probability of taking certain values from a probability distribution. If we say that Z∼f(y)Z \sim f(y), then we are saying that the probability that ZZ takes a value in the set Ω\Omega is:

∫Ωf(y)dy\int_\Omega f(y)dy

For example, if ZZ is a scalar, then the probability that Z∈[0,1]Z \in [0,1] is:

∫01f(y)dy\int_0^1 f(y)dy

Discrete probability distributions can be handled by either using distribution quantities and measures in the integral, or by simply saying f(y)f(y) is the probability that Z=yZ = y.

Given this representation of variables, axax where aa follows a probability distribution induces a probability distribution on f(x)f(x). To numerically acquire this distribution, one can use Monte Carlo sampling. This is simply the repeat process of:


	Sample variables

	Compute output



Doing this repeatedly then produces samples of f(x)f(x) from which a numerical representation of the distribution can be had. From there, going to a multivariable linear model like f(x)=Axf(x) = Ax is the same idea. Going to f(x)f(x) where ff is an arbitrary program is still the same idea: sample every variable in the program, compute the output, and repeat for many samples. ff can be a neural network where all of the parameters are probabilistic, or it can be an ODE solver with probabilistic parameters.



16.3 Quick Example

Let’s do a quick example with the Lotka-Volterra equations. Recall that this is the ordinary differential equation defined by the following system:


using OrdinaryDiffEq, Plots
function lotka_volterra(du,u,p,t)
  du[1] = p[1] * u[1] - p[2] * u[1]*u[2]
  du[2] = -p[3] * u[2] + p[4] * u[1]*u[2]
end
θ = [1.5,1.0,3.0,1.0]
u0 = [1.0;1.0]
tspan = (0.0,10.0)
prob1 = ODEProblem(lotka_volterra,u0,tspan,θ)
sol = solve(prob1,Tsit5())
plot(sol)
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17 Global Sensitivity Analysis


17.1 Youtube Video

Sensitivity analysis is the measure of how sensitive a model is to changes in parameters, i.e. how much the output changes given a change in the input. Clearly, derivatives are a measure of sensitivity, but derivative are local sensitivity measures because they are only the derivative at a single point. However, the idea of probabilistic programming starts to bring up an alternative question: how does the output of a model generally change with a change in the input? This kind of question requires an understanding of global sensitivity of a model. While there isn’t a single definition of the concept, there are a few methods that individuals have employed to estimate the global sensitivity.

Reference implementations of these methods can be found in GlobalSensitivity.jl



17.2 Setup for Global Sensitivity

In our global sensitivity analysis, we have a model ff and want to understand the relationship

y=f(xi)y = f(x_i)

Recall ff can be a neural network, an ODE solve, etc. where the XiX_i are items like initial conditions and parameters. What we want to do is understand how much the total changes in yy can be attributed to changes in specific xix_i.

However, this is not an actionable form since we don’t know what valid inputs into ff look like. Thus any global sensitivity study at least needs a domain for the xix_i, at least in terms of bounds. This is still underdefined because what makes one thing that it’s not more likely for xix_i to be near the lower part of the bound instead of the upper part? Thus, for global sensitivity analysis to be well-defined, xix_i must take a distributional form, i.e. be random variables. Thus ff is a deterministic program with probabilistic inputs, and we want to determine the effects of the distributional inputs on the distribution of the output.


17.2.1 Reasons for Global Sensitivity Analysis

What are the things we can learn from doing such a global sensitivity analysis?


	You can learn what variables would need to be changed to drive the solution in a given direction or control the system. If your model is exact and the parameters are known, the “standard” methods apply, but if your model is only approximate, a global sensitivity metric may be a better prediction as to how variables cause changes.

	You can learn if there are any variables which do not have a true effect on the output. These variables would be practically unidentifiable from data and models can be reduced by removing the terms. It also is predictive as to robustness properties.

	You can find ways to automatically sparsify a model by dropping off the components which contribute the least. This matters in automatically generated or automatically detected models, where many pieces may be spurious and global sensitivities would be a method to detect that in a manner that is not sensitive to the chosen parameters.






17.3 Global Sensitivity Analysis Measures


17.3.1 Linear Global Sensitivity Metrics: Correlations and Regressions

The first thing that you can do is approximate the full model with a linear surrogate, i.e.

y=AXy = AX

for some linear model. A regression can be done on the outputs of the model in order to find the linear approximation. The best fitting global linear model then gives coefficients for the global sensitivities via the individual effects, i.e. for

y=∑iβixiy = \sum_i \beta_i x_i,

the βi\beta_i are the global effect. Just as with any use of a linear model, the same ideas apply. The coefficient of determination (R2R^2) is a measure of how well the model fits. However, one major change needs to be done in order to ensure that the solutions are comparable between different models. The dependence of the solution on the units can cause the coefficients to be large/small. Thus we need to normalize the data, i.e. use the transformation

xĩ=xi−E[xi]V[xi]\tilde{x_i} = \frac{x_i-E[x_i]}{V[x_i]} yĩ=yi−E[yi]V[yi]\tilde{y_i} = \frac{y_i-E[y_i]}{V[y_i]}

The normalized coefficients are known as the Standardized Regression Coefficients (SRC) and are a measure of the global effects.

Notice that while the βi\beta_i capture the mean effects, it holds that

V(y)=∑iβi2xiV(y) = \sum_i \beta^2_i x_i

and thus the variance due to xix_i can be measured as:

SRCi=βiV[xi]V[y]SRC_i = \beta_i \sqrt{\frac{V[x_i]}{V[y]}}

This interpretation is the same as the solution from the normalized variables.

From the same linear model, two other global sensitivity metrics are defined. The Correlation Coefficients (CC) are simply the correlations:

CCi=cov(xi,y)V[xi]V[y]CC_i = \frac{\text{cov}(x_i,y)}{\sqrt{V[x_i]V[y]}}

Similarly, the Partial Correlation Coefficient is the correlation coefficient where the linear effect of the other terms are removed, i.e. for Si=x1,x2,…,xj−1,xj+1,…,xnS_i = {x_1,x_2,\ldots,x_{j-1},x_{j+1},\ldots,x_n} we have

PCCi|Si=cov(xi,y|S)j)V[xi|Si]V[y|Si]PCC_{i|S_i} = \frac{\text{cov}(x_i,y|S)j)}{\sqrt{V[x_i|S_i]V[y|S_i]}}



17.3.2 Derivative-based Global Sensitivity Measures (DGSM)

To go beyond just a linear model, one might want to do successive linearization. Since derivatives are a form of linearization, then one may thing to average derivatives. This averaging of derivatives is the DGSM method. If the xix_i are random variables with joint CDF F(x)F(x), then it holds that:

vi=∫Rd(∂f(x)∂xi)2dF(x)=𝔼[(∂f(x)∂xi)2],v_i = \int_{R^d} \left(\frac{\partial f(x)}{\partial x_i}\right)^2 dF(x) = \mathbb{E}\left[\left(\frac{\partial f(x)}{\partial x_i}\right)^2\right],

We can also define the mean measure, which is simply:

wi=∫Rd∂f(x)∂xidF(x)=𝔼[∂f(x)∂xi].w_i = \int_{R^d} \frac{\partial f(x)}{\partial x_i} dF(x) = \mathbb{E}\left[\frac{\partial f(x)}{\partial x_i}\right].

Thus a global variance estimate would be vi−wi2v_i - w_i^2.



17.3.3 ADVI for Global Sensitivity

Note that the previously discussed method for probabilistic programming, ADVI, is a method for producing a Gaussian approximation for a probabilistic program. The resulting mean-field or full Gaussian approximations are variance index calculations!



17.3.4 The Morris One-At-A-Time (OAT) Method

Instead of using derivatives, one can use finite difference approximations. Normally you want to use small Δx\Delta x, but if we are averaging derivatives over a large area, then in reality we don’t really need a small Δx\Delta x!

This is where the Morris method comes in. The basic idea is that moving in one direction at a time is a derivative estimate, and if we step large enough then the next derivative estimate may be sufficiently different enough to contribute well to the total approximation. Thus we do the following:


	Take a random starting point

	Randomly choose a direction ii and make a change Δxi\Delta x_i only in that direction.

	Calculate the derivative approximation from that change. Repeat 2 and 3.



Keep doing this for enough steps, and the average of your derivative approximations becomes a global index. Notice that this reuses every simulation as part of two separate estimates, making it much more computationally efficient than the other methods. However, it accounts for average changes and not necessarily measurements gives a value that’s a decomposition of a total variance. But its computational cost makes it attractive for making quick estimates of the global sensitivities.

For practical usage, a few changes have to be done. First of all, notice that positive and negative change can cancel out. Thus if one want to measure of associated variance, one should use absolute values or squared differences. Also, one needs to make sure that these trajectories get good coverage of the input space. Define the distance between two trajectories as the sum of the geometric distances between all pairs of points. Generate many more trajectories than necessary and choose the rr trajectories with the largest distance. If the model evaluations are expensive, this is significantly cheap enough in comparison that it’s okay to do.



17.3.5 Sobol’s Method (ANOVA)

Sobol’s method is a true nonlinear decomposition of variance and it is thus considered one of the gold standards. For Sobol’s method, we define the decomposition

f(x)=f0+∑ifi(xi)+∑i,jfij(xi,xj)+…f(x) = f_0 + \sum_i f_i(x_i) + \sum_{i,j} f_{ij}(x_i,x_j) + \ldots

where

f0=∫Ωf(x)dxf_0 = \int_\Omega f(x) dx

and orthogonality holds:

fi,j,…(xi,xj,…)dx=0f_{i,j,\ldots}(x_i,x_j,\ldots)dx = 0

by the definitions:

fi(xi)=E(y|xi)−f0f_i(x_i) = E(y|x_i) - f_0

fij(xi,yj)=E(y|xi,xj)−f0−fi−fjf_{ij}(x_i,y_j) = E(y|x_i,x_j) - f_0 - f_i - f_j

Assuming that f(x)f(x) is L2, it holds that

∫Ωf2(x)dx−f02=∑s∑i∫fi1,i2,…,is2dx\int_\Omega f^2(x)dx - f_0^2 = \sum_s \sum_i \int f^2_{i_1,i_2,\ldots,i_s} dx

and thus

V[y]=∑Vi+∑Vij+…V[y] = \sum V_i + \sum V_{ij} + \ldots

where

Vi=V[Ex∼i[y|xi]]V_i = V[E_{x_{\sim i}}[y|x_i]] Vij=V[Ex∼ij[y|xi,xj]]−Vi−VjV_{ij} = V[E_{x_{\sim ij}}[y|x_i,x_j]]-V_i - V_j

where X∼iX_{\sim i} means all of the variables except XiX_i. This means that the total variance can be decomposed into each of these variances.

From there, the fractional contribution to the total variance is thus the index:

Si=ViVar[y]S_i = \frac{V_i}{Var[y]}

and similarly for the second, third, etc. indices.

Additionally, if there are too many variables, one can compute the contribution of xix_i including all of its interactions as:

STi=EX∼i[Var[y|X∼i]]Var[y]=1−VarX∼i[EXi[y|x∼i]]Var[y]S_{T_i} = \frac{E_{X_{\sim i}}[Var[y|X_{\sim i}]]}{Var[y]} = 1 - \frac{Var_{X_{\sim i}}[E_{X_i}[y|x_{\sim i}]]}{Var[y]}


17.3.5.1 Computational Tractability and Quasi-Monte Carlo

Notice that every single expectation has an integral in it, so the variance is defined as integrals of integrals, making this a very challenging calculation. Thus instead of directly calculating the integrals, in many cases Monte Carlo estimators are used. Instead of a pure Monte Carlo method, one generally uses a low-discrepancy sequence (a form of quasi-Monte Carlo) to effectively sample the search space.

The following generates for example a Sobol sequence:


using Sobol, Plots
s = SobolSeq(2)
p = hcat([next!(s) for i = 1:1024]...)'
scatter(p[:,1], p[:,2])
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18 Code Profiling and Optimization


18.1 Youtube Video

This is just a quick look into code profiling. By now we should be writing high performance parallel code which is combining machine learning and scientific computing techniques and doing large-scale parameter analyses on the models. However, at this point it may be difficult to understand where our performance difficulties lie. This is where we turn to code profiling tooling.



18.2 Type Inference Checking

The most common way for code to slow down is via type-inference issues. One can normally work through them by “thinking like a compiler” and seeing what would be inferable. For example, a common issue is to not concretely type one’s types. For example:


struct MyStruct
  a::AbstractArray
end
x = MyStruct([1,2,3])
function f(x)
  x.a[1]
end
using InteractiveUtils
@code_warntype f(x)



MethodInstance for f(::MyStruct)
  from f(x) @ Main In[3]:5
Arguments
  #self#




::Core.Const(f)
  x::MyStruct
Body::Any
1 ─




 %1 = Base




.getproperty(x, :a)




::AbstractArray
│   %2 = Base.getindex(%1, 1)::Any
└──      return %2






In this case, the return type is not inferred and using MyStruct will generate slow code. The reason for this is quite simple: x.a can only be inferred as AbstractArray, and thus the element type x.a[1] and the exact dispatch cannot be known until the function finds out at runtime what kind of array it is. As a result, the compiler throws the only thing it can: it puts Any as the inferred type and runs slow code.

We can instead utilize a concrete struct or use a parametric type to create a family of related structs:


struct MyStruct2{A <: AbstractArray}
  a::A
end
x2 = MyStruct2([1,2,3])
@code_warntype f(x2)



MethodInstance for f(::MyStruct2{Vector{Int64}})
  from f(x) @ Main In[3]:5
Arguments
  #self#::Core.Const(f)
  x::MyStruct2{Vector{Int64}}
Body::Int64
1 ─ %1 = Base.getproperty(x, :a)::Vector{Int64}
│   %2 = Base.getindex(%1, 1)::Int64
└──      return %2






and now it’s inferred because the information that it would need is inferrable.

But what if we needed help? The first tool of course is @code_warntype. But for deeper functions you may want more tooling. A nice tool is Traceur.jl which will alert you to the lines at which you have performance issues. In our example we see:


using Traceur
@trace f(x)




┌ Warning: dynamic dispatch to Base.getindex(Base.getfield(x, a), 1)
└ @ none:-1
┌ Warning: f returns Any
└ @ none:2

which points out our first problem is getting the untyped array out of the MyStruct. On larger functions it can do even more:


function naive_sum(xs)
  s = 0
  for x in xs
    s += x
  end
  return s
end
@trace naive_sum([1.])




┌ Warning:  is assigned as Tuple{Int64,Int64}
└ @ array.jl:-1
┌ Warning:  is assigned as Nothing
└ @ array.jl:-1
┌ Warning:  is assigned as Union{Nothing, Tuple{Float64,Int64}}
└ @ none:-1
┌ Warning:  is assigned as Union{Nothing, Tuple{Float64,Int64}}
└ @ none:-1
┌ Warning: s is assigned as Int64
└ @ none:-1
┌ Warning: s is assigned as Float64
└ @ none:-1
┌ Warning: naive_sum returns Union{Float64, Int64}
└ @ none:2

and alert you to multiple lines which are causing problems.

However, for even larger functions you can still have many issues that are hard to dig into with Julia a linear tool. For thus, Cthulhu.jl’s @descend macro lets you interactively dig into the function to find the problematic lines. For the best introduction, watch Valentin Churavy’s JuliaCon 2019 talk



18.3 Flame Graphs

Flame graphs are a common tool for illustrating performance. To demonstrate this let’s look at the solution to an ODE from DifferentialEquations.jl’s OrdinaryDiffEq.jl. The code is the following:


using OrdinaryDiffEq
function lorenz(du,u,p,t)
 du[1] = 10.0(u[2]-u[1])
 du[2] = u[1]*(28.0-u[3]) - u[2]
 du[3] = u[1]*u[2] - (8/3)*u[3]
end
u0 = [1.0;0.0;0.0]
tspan = (0.0,100.0)
prob = ODEProblem(lorenz,u0,tspan)
sol = solve(prob,Tsit5())
using Plots; plot(sol,vars=(1,2,3))



┌ Warning: To maintain consistency with solution indexing, keyword argument vars will be removed in a future version. Please use keyword argument idxs instead.
│   caller = ip:0x0
└ @ Core :-1






  
  
  ch020.xhtml
  
  

  
  
  

  

  




19 Uncertainty Programming, Generalized Uncertainty Quantification


19.1 Youtube Video

In this lecture we will mix two separate topics: uncertainty quantification and adaptivity of algorithms. Using compiler-based tooling, similar to how automatic differentiation and probabilistic programming toolchains, we will show how one can begin to pushforward uncertainties of a model or calculation. This leads to an idea of uncertainty programming, a term which is not in use but should be justified by these notes.



19.2 What is Uncertainty Quantification?

Uncertainty quantification is the identification and quantification of sources of uncertainty. In our training of a neural differential equation, we have seen that the question of uncertainty can quickly become muddled. Results are inexact because of:


	Truncation errors in the ODE solve

	Truncation errors in the adjoint ODE solve

	Truncation errors in the interpolation calculation

	Numerical errors in every dot product along the way (!)

	Numerical errors in matrix multiplication and linear solving (latter when implicit)

	Numerical errors in backpropagation

	Measurement errors in our fitting data

	Randomness in the optimizer (when stochastic, like ADAM)

	What is the error in the model specification / model form?



“How correct is my model?” is thus a very involved question, since you’d have to know that every source of uncertainty is contained. In some cases we have rigorous mathematical results proving bounds. In other cases, we need to find empirical ways to quantify what’s going on using our known bounds.



19.3 Some High Level UQ Techniques

Two high level UQ techniques fall out of methodologies we have recently discussed. If we fit a model ff to data, be it a neural network, a neural ODE, or some physical ODE model, we can fit it probabilistically using the Bayesian estimation or probabilistic programming tools previously described. With this form of fitting, one can ask the question “what are the likely results from the model given these parameter distributions?”, which can then be answered through Monte Carlo sampling.

Another form of high level UQ is global sensitivity analysis, which gives a measurement for how much the output is going to vary over a wide range and thus relates uncertainties in the input to uncertainties in the output.



19.4 Pushforward Methods for Uncertainties

Instead of relying on expensive Monte Carlo methods for the pushforward of an uncertainty, we can derive a more programmatic approach to uncertainty quantification through the use of uncertain number arithmetic.

To start, let’s first revive the old physics way to doing simple uncertainty quantification. If you have two numbers, x=a±bx = a \pm b, one might remember the rules like,

α+a=(α+a)±b\alpha + a = (\alpha + a) \pm b αa=αa±|α|b\alpha a = \alpha a \pm |\alpha| b

Let’s investigate this a bit more and see if we can develop an arithmetic, like dual numbers, to then propagate through whole programs. This idea comes from the arithmetic on normally distributed random variables. If we interpret x∼N(a,b)x \sim N(a,b), i.e. a normally distributed random variable with mean aa and standard deviation bb, then the distributions follow that:

α+a∼N(α+a,b)\alpha + a \sim N(\alpha + a,b) αa∼N(αa,|α|b)\alpha a \sim N(\alpha a,|\alpha|b)

From here we can begin to expand to multiple variables. If f=Axf = Ax where xN(μ,Σ)x ~ N(\mu,\Sigma) is a multidimensional random variable, then

E[f]=AμE[f] = A\mu

and

V[f]=AΣATV[f] = A \Sigma A^T

Now take a nonlinear f(x)f(x). By a Taylor expansion we have that

f(x)=f0+Jx+…f(x) = f_0 + Jx + \ldots

i.e. the linear approximation is f0+Jxf_0 + Jx where f0=f(μ)f_0 = f(\mu) and JJ is the Jacobian matrix. If we do a pushforward on the linear approximation, we receive

f(x)N(f(μ),JΣJT)f(x) ~ N(f(\mu),J\Sigma J^T)

which gives the rules for the pushforward on any possible function through the linearization. But the linearization is the same as the forward differencing ones, meaning that we can augment existing tooling for forward-mode automatic differentiation to perform pushforwards of uncertain quantities. A library which does this is Measurements.jl. Note that this library additionally tracks the correlations between each variable so that the second order terms are accurate.


19.4.1 Measurements.jl in Practice: Measurements on DifferentialEquations

Since DifferentialEquations.jl takes in arbitrary number types, we can have it recompile to do the arithmetics of uncertainty propagation. For example, the following solves the pendulum of arbitrary amplitude with respect to uncertain parameters and initial conditions:

θ̈+gLsin(θ)=0\ddot{\theta} + \frac{g}{L} \sin(\theta) = 0


using OrdinaryDiffEq, Measurements
gaccel = 9.79 ± 0.02; # Gravitational constants
L = 1.00 ± 0.01; # Length of the pendulum

#Initial Conditions
u₀ = [0 ± 0, π / 3 ± 0.02] # Initial speed and initial angle
tspan = (0.0, 6.3)

#Define the problem
function simplependulum(du,u,p,t)
    θ  = u[1]
    dθ = u[2]
    du[1] = dθ
    du[2] = -(gaccel / L) * sin(θ)
end

#Pass to solvers
prob = ODEProblem(simplependulum, u₀, tspan)
sol = solve(prob, Tsit5(), reltol = 1e-6)

using Plots
plot(sol,plotdensity=100,vars=2)



┌ Warning: To maintain consistency with solution indexing, keyword argument vars will be removed in a future version. Please use keyword argument idxs instead.
│   caller = ip:0x0
└ @ Core :-1
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